Climate forecast models are underpinned by remotely sensed data, but a factor of 10 improvement in measurement accuracy was required to discriminate between natural variabilities in climate and the ‘anthropogenic‘ (human-caused) contributions. Improved accuracy would result in improved climate forecasts and increased confidence in adaptation and mitigation policies.
The project provided new techniques and facilities to allow significant improvements to be made to the calibration and validation of instruments used to collect the data to better understand climate change. As these techniques started to be used to calibrate sensors, more robust information and advice could be delivered to policy makers, supporting far-reaching socio-economic decisions on mitigating and adapting to climate change.


  • NPL, United Kingdom
  • Aalto, Finland
  • INRIM, Italy
  • JRC, European Commission
  • LNE, France
  • MIKES, Finland
  • PTB, Germany
  • SFI Davos, Switzerland
  • BUW, Germany
  • DLR, Germany
  • FGI, Finland
  • FZJ, Germany
  • BUW Germany
  • DLR Germany
  • FGI Finland
  • FZJ Germany


Ensuring accuracy in the upper atmosphere

Confidence in climate data 

Seeing ocean colour from space


The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union 


[1] In situ determination of the remote sensing reflectance: an inter-comparison G. Zibordi, K. Ruddick, I. Ansko, G. Moore, S. Kratzer, J. Icely, and A. Reinart Ocean Sciences, 2012, 8, 567-586.

[2] Comparison of the radiation temperature scales of the PTB and the NPL in the temperature range from −57 °C to 50 °C
B. Gutschwager, E. Theocharous, C. Monte, A. Adibekyan, M. Reiniger, N.P. Fox, J. Hollandt Measurement Science and Technology, 2013, 24, 6, 065002

[3] In-flight blackbody calibration sources for the GLORIA interferometer
F. Olschewski, C. Rolf, P. Steffens, A. Kleinert, C. Piesch, A. Ebersoldt, C. Monte, B. Gutschwager, J. Hollandt, P. Preusse, F. Friedl-Vallon, Ralf Koppmann
Proc. SPIE 8511, Infrared Remote Sensing and Instrumentation XX, 2012, (doi:10.1117/12.928194)

[4] Experimental evaluation of Sentinel-2 spectral response functions for NDVI time-series continuity. D’Odorico, P., Gonsamo, A., Damm, A. and Schaepman, M.E.
IEEE Transactions on Geoscience and Remote Sensing, Special Issue on Intercalibration and Satellite Instruments, 2013, 51 (3), 1336-1348

[5] Radiation Thermometry for Remote Sensing at PTB
C. Monte, B. Gutschwager, A. Adibekyan, M. Kehrt, F. Olschewski, J. Hollandt
Proceedings 9th International Temperature Symposium (ITS-9) by AIP, 2013, AIP Conf. Proc. 1552, 722- 727. (

[6] Assessment of MERIS Ocean Color Data Products for European Seas G. Zibordi, F. Mélin, J.-F. Berthon and E. Canuti
Ocean Science, 2013, 9, 521-533. (doi:10.5194/os-9-521-2013)

[7] Cosine error for a class of hyper-spectral irradiance sensors S. Mekaoui and G. Zibordi
Metrologia, 2013, 50, 187-199. (doi:10.1088/0026-1394/50/3/187)

[8] An in-flight blackbody calibration source for the GLORIA interferometer on board an airborne research platform
R. Koppmann, F. Olschewski, P. Steffens, C. Rolf, P. Preusse, A. Ebersoldt, F. Friedl-Vallon, A. Kleinert, C. Piesch, J. Hollandt, B. Gutschwager and C. Monte

AIP Conf. Proceedings, 2013, 1531, 332. (doi:

[9] An in-flight blackbody calibration system for the GLORIA interferometer on board an airborne research platform
F. Olschewski, A. Ebersoldt, F. Friedl-Vallon, B. Gutschwager, J. Hollandt, A. Kleinert, C. Monte, C. Piesch, P. Preusse, C. Rolf, P. Steffens, and R. Koppmann

Atmospheric Measurement Techniques, 2013, 6, 3067-3082, (doi: 10.5194/amt-6-3067-2013)

[10] Radiometric Calibration of the In-flight Blackbody Calibration System of the GLORIA Interferometer C. Monte, B. Gutschwager, A. Adibekyan, M. Kehrt, A. Ebersoldt, F. Olschewski, J. Hollandt Atmospheric Measurement Techniques, 2014, 7, 13-27, (doi:10.5194/amt-7-13-2014)

[11] An Assessment of AERONET-OC LWN Uncertainties M. Gergely and G. Zibordi
Metrologia, 2014, 51, 40-47

[12] The APEX (Airborne Prism Experiment – Imaging Spectrometer) Calibration Information System Hueni, A., Lenhard, K., Baumgartner, A., Schaepman, M.
IEEE Transactions on Geoscience and Remote Sensing, 51(11), 5169-5180

[13] Impacts of Dichroic Prism Coatings on Radiometry of the Airborne Imaging Spectrometer APEX Hueni, A., Schlaepfer, D., Jehle, M., & Schaepman, M.E.
Applied Optics, 2014, 53 (24), 5344-5352

[14] The Metrology of Directional, Spectral Reflectance Factor Measurements Based on Area Format Imaging by UAVs
Honkavaara, E., Markelin, L., Hakala, T., Peltoniemi, J.
PFG Photogrammetrie, Fernerkundung, Geoinformation, 2014, 3, 0185–0198.

[15] Technical Notes: A detailed study for the provision of measurement uncertainty and traceability for goniospectrometers
Peltoniemi, J.I., Hakala, T., Suomalainen, J., Honkavaara, E., Markelin, L., Gritsevich, M., Eskelinen, J., Jaanson, P., Ikonen, E.

Journal of Quantitative Spectroscopy and Radiative Transfer, 2014, Volume 146, 376–390

[16] Do we (need to) care about canopy radiation schemes in DGVMs?
Loew A., van Bodegom P. M., Widlowski J.-L., Otto J., Quaife T., Pinty B. and Raddatz T. Biogeosciences, 2014, 11, 1873-1897 (10.5194/bg-11-1873-2014)

[17] Phytos: a portable goniometer for in situ spectro-directional measurements of leaves
Lapo Lolli, Marco Pisani, Mauro Rajteri, Jean-Luc Widlowski, Agnieszka Bialek, Claire Greenwell and Nigel Fox
Metrologia, 2014, 51 S309–S313

[18] Spectral radiance source based on supercontinuum laser and wavelength tunable bandpass filter: the spectrally tunable absolute irradiance and radiance source
Levick, APL, Greenwell, CLG, Ireland, JI, Woolliams, ERW, Goodman, TMG, Bialek, AB, and Fox, NPF Applied Optics, 2014, 53, 3508-3519

[19] Intercomparison of fraction of absorbed photosynthetically active radiation products derived from satellite data over Europe
D’Odorico, Petra, Gonsamo, Alemu, Pinty, Bernard, Gobron, Nadine, Coops, Nicholas, Mendez, Elias and Schaepman, Michael

Remote Sensing of Environment, 2014, 142, 141-154