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e.V.). The EMRP will ensure collaboration between National Measurement Institutes, reducing duplication and increasing 

impact. The overall goal of the EMRP is to accelerate innovation and competitiveness in Europe whilst continuing to provide 
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the European Metrology Research Programme. MetEOC is developing new infrastructure and methods to allow higher, 

traceable, accuracy to be delivered to the European calibration and validation community.  

This includes: 

 Characterisation of the stray-light properties of an airborne hyperspectral imager using tuneable laser radiation.  
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1 Introduction 

This is the course textbook for the training course developed under the EMRP project 
MetEOC-1 as an intermediate level training course for uncertainty analysis with emphasis on 
radiometric instrument calibration and characterisation for Earth Observation. 

The textbook does not follow the course lectures completely, but is designed as a stand-
alone ‘teach yourself’ guide which is supplemented by the lectures. In particular the textbook 
includes topics that are not taught during the course (in particular straight line calibration 
equations and spectral effects) and does not include other topics that are taught in the 
course (most notably vicarious calibration). 
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2 Key concepts for uncertainty analysis 

This intermediate-level course builds on some key ideas for uncertainty analysis that are 
provided in beginner level texts, for example the NPL Best Practice Guide number 11 by 
Stephanie Bell. This is freely downloadable at: http://www.npl.co.uk/publications/guides/a-
beginners-guide-to-uncertainty-of-measurement. Also consider NPL’s e-courses (see the 
Further Study section on page 121.  

This section of this textbook emphasises some of the key ideas of uncertainty analysis that 
are assumed for the rest of the course.  

2.1 QA4EO 

The Quality Assurance Framework for Earth Observation (QA4EO) was written and endorsed 
by the Committee on Earth Observation Satellites (CEOS) and consists of a key principle, 
supported by a set of guidelines. The QA4EO Key Principle states: 

Data and derived products shall have associated with them a fully traceable 
indicator of their quality 

With the definitions: 

Quality Indicator 

A Quality Indicator (QI) shall provide sufficient information to allow all users 
to readily evaluate the “fitness for purpose” of the data or derived product 

Traceability 

A QI shall be based on a documented and quantifiable assessment of 
evidence demonstrating the level of traceability to internationally agreed 
(where possible SI) reference standards 

Its aim is to provide EO data users with sufficient (simple) information to enable them to 
evaluate the fitness-for-purpose of data/information for their applications through the 
assignment of Quality Indicators (QI) to data and derived products. QA4EO encourages the 
quantification of uncertainties and the documentation of supporting evidence.  

There are seven guidelines written to aid the user in this process, providing examples, 
templates and details of the sort of information and evidence which should be made 
available. These guidelines are largely derived from existing best practice in both the EO 
sector and elsewhere, and are listed in Table 1. 

This course text is fully compliant with QA4EO. 
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Table 1 List of QA4EO Guidelines.  

QA4EO-QAEO-GEN-DQK-001 A guide to establish a Quality Indicator on a satellite sensor derived data product 

QA4EO-QAEO-GEN-DQK-002 
A guide to content of a documentary procedure to meet the Quality Assurance 

requirements of CEOS 

QA4EO-QAEO-GEN-DQK-003 
A guide to “reference standards” in support of Quality Assurance requirements of 

QA4EO 

QA4EO-QAEO-GEN-DQK-004 

A guide to comparisons: organisation, operation and analysis to establish 

measurement equivalence to underpin the Quality Assurance requirements of 

QA4EO 

QA4EO-QAEO-GEN-DQK-005 
A guide to establishing validated models, algorithms and software to underpin 

the Quality Assurance requirements of QA4EO 

QA4EO-QAEO-GEN-DQK-006 A guide to expression of uncertainty of measurements 

QA4EO-QAEO-GEN-DQK-007 
A guide to establishing quantitative evidence of traceability to underpin the 

Quality Assurance requirements of QA4EO 

2.2 The ISO and BIPM Guide to the Expression of Uncertainty in 
Measurement (GUM) 

The Guide to the Expression of Uncertainty in Measurement, known as ‘the GUM’, provides 
guidance on how to determine, combine and express uncertainty [1]. It was developed by the 
JCGM (Joint Committee for Guides in Metrology), a joint committee of all the relevant 
standards organisations (e.g. ISO) and the BIPM (Bureau International des Poids et Mesures). 
This heritage gives the GUM authority and recognition. The JCGM continues to develop the 
GUM and has recently produced a number of supplements. All of these, as well as the ‘VIM’ 
(International Vocabulary of Metrology, [2]) are freely downloadable from the BIPM website1. 

QA4EO Guideline 006 attempts to explain the main principles of the GUM to the EO 
community.  

This course is fully compliant with the GUM. 

2.3 Traceability and SI 

Traceability is defined by the Committee for Earth Observation Satellites (CEOS) as the 

Property of a measurement result relating the result to a stated 
metrological reference (free definition and not necessarily SI) through an 
unbroken chain of calibrations of a measuring system or comparisons, each 
contributing to the stated measurement uncertainty. 

Traceability includes both an unbroken chain (i.e. it is calibrated against X, which was 
calibrated against Y, which was calibrated against Z, all the way back to SI, or, perhaps, a 
community reference) and the documentary evidence that each step was done in a reliable 
way (ideally audited, at least thoroughly peer-reviewed). 

                                                 

1 http://www.bipm.org/en/publications/guides/ 
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Traceability should, ideally, be to the International System of Units, known as the SI from its 
French name, le Système international d’unités. The SI units provide a coherent system of 
units of measurement built around seven base units and coherent derived units. A coherent 
system of units means that a quantity’s value does not depend on how it was measured. The 
SI is an evolving system, with the responsibility for ensuring long term consistency with the 
General Conference on Weights and Measures (CGPM), run through the International Bureau 
of Weights and Measures, the BIPM, and maintained nationally through the National 
Metrology Institutes (NMIs). The Mutual Recognition Arrangement (MRA) signed in 1999 
between the NMIs ensures that measurements made traceably to any NMI within the MRA 
are recognised by other NMIs. This is enforced by both formal international comparisons and 
a process of auditing and peer-reviewing statements of calibration capability. For the user, 
this means that traceability to SI can be achieved through any NMI within the MRA. 

2.4 Corrections, errors and uncertainties  

The terms ‘error’ and ‘uncertainty’ are not synonyms, although they are often confused. To 
understand the distinction, consider the result of a measurement – the measured value. The 
value will differ from the true value for several reasons, some of which we may know about. 
In these cases, we apply a correction. A correction is applied to a measured value to account 
for known differences, for example the measured value may be multiplied by a gain 
determined during the instrument’s calibration, or a measured optical signal may have a dark 
reading subtracted. This correction will never be perfectly known and there will also be other 
effects that cannot be corrected, so after correction there will always be a residual, unknown 
error – an unknown difference between the measured value and the (unknown) true value. 

The specific error in the result of a particular measurement cannot be known, but we 
describe it as a draw from a probability distribution function. The uncertainty associated 
with the measured value is a measure of that probability distribution function; in particular, 
the standard uncertainty is the standard deviation of the probability distribution, and the 
equivalent of this for other distributions2. 

There are generally several ‘sources of uncertainty’ that jointly contribute to the uncertainty 
associated with the measured value. These will include uncertainties associated with the way 
the measurement is set up, the values indicated by instruments, and residual uncertainties 
associated with corrections applied. The final (unknown) error on the measured value is 
drawn from the overall probability distribution described by the uncertainty associated with 
the measured value. This is built up from the probability distributions associated with all the 
different sources of uncertainty. 

The use of the words ‘error’ and ‘uncertainty’ described here is consistent with paragraph 
2.2.4 of the GUM. See also Section 2.6.1 and Figure 1. 

                                                 

2 See the note box in section 0 . 
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2.5 The law of propagation of uncertainties 

The aim of uncertainty analysis is to estimate the uncertainty associated with the measured 
value, which may be the result of a process involving several different parameters being 
controlled and set or measured, and a calculation. To obtain the final uncertainty, 
uncertainties due to each element in the process that affect the final result must be 
combined – i.e. they must be propagated through this process.  

The GUM gives the Law of Propagation of Uncertainty: 

      
2 1

2 2
c

1 1 1

 2 , ,
n n n

i i j
i i ji i j i

f f f
u y u x u x x

x x x



   

   
     
   (2.1) 

which applies for a measurement model of the form  

  1 2 3, , , , ,iY f X X X X    (2.2) 

where an estimate ix  of quantity iX  has an associated uncertainty  iu x . The quantity 

 2
cu y is the squared standard uncertainty (standard deviation of the probability distribution) 

associated with the measured value y  which comes from a combination of the uncertainties 

associated with all the different effects, ix . The square of the standard uncertainty is also 

known as the variance.  

The Law of Propagation of uncertainties is discussed in detail in Section 3. It can help to write 
it in terms of sensitivity coefficients as 

      
1

2 2 2
c

1 1 1

2 , ,
n n n

i i i j i j
i i j i

u y c u x c c u x x


   

     (2.3) 

where the sensitivity coefficient i ic f x   . The sensitivity coefficient is a ‘translation’ from 

one variable to another. It answers the question: “how sensitive is y  to an uncertainty 

associated with ix ?” 

The law of propagation of uncertainties is written in this slightly complex notation of two 
parts to separate two terms: 

 The first term is the sum of the squares of the standard uncertainties  iu x  (the sum 

of the variances) associated with each individual effect multiplied by the relevant 
sensitivity coefficient (the partial derivative).  This first term is what is meant by the 
description ‘adding in quadrature’.  

 The second term deals with the covariance of correlated quantities. The covariance is 
a measure of how much the two quantities vary together. See also Section 3.5.  

Note that the covariance term covers all pairs of different quantities, e.g. 

     1 2 1 3 2 3, , , , , ,x x x x x x  . Since the covariance    1 2 2 1, ,u x x u x x , the summation is 
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only over the combinations where i j  (i.e. only half the cases). The 2  in front of this term 

accounts for the opposite cases. 

2.6 Classifications 

2.6.1 Random and Systematic Effects 

Correlation will be introduced whenever there is something in common between two 
measured values that will be combined (i.e. two values that will be averaged, or two 
quantities used in a measurement equation, or values at different wavelengths that will be 
combined through interpolation or integration). The simplest way to describe this is in terms 
of random and systematic effects.  

Random effects are those that are not common to the multiple measurements being 
combined. A common example is noise: two measured values may both suffer from noise, 
but the effect of noise will be different for each of the two measured values (for example, if 
noise has increased one measured value, this provides no information about whether any 
other measured value is increased or decreased by that noise, nor by what extent).  

Systematic effects are those that are common to all measured values. If one measured 
value has been increased as a result of a systematic effect, then we can make a reliable 
prediction regarding whether any other measured value will be increased, and by how much. 
For example each time the distance is set for an irradiance measurement using a particular 
lamp, there will be a (normally small) error in that distance. This will equally affect all 
measurements of that lamp until the next alignment. If multiple measured values are 
averaged without realignment, or measured values at different wavelengths are combined in 
an integral, then the distance error will be common to all those measured values. This is a 
systematic effect. 

Some effects, such as noise, are always random; other effects can be either random or 
systematic depending on the measurement process. For example, if three measured values of 
a lamp are combined in an average and the lamp is realigned between each measurement, 
then alignment/distance is a random effect. If the lamp is not realigned between 
measurements, then alignment/distance is a systematic effect. 

The error in the measured value due to a random effect will change from one measured 
value to another. In this case the uncertainty associated with the effect may be the same for 
each measured value (the probability distribution for the effect is the same for each 
measured value), but each measured value is independent of each other measured value, as 
influenced by this effect. The unknown random error at each measured value is an 
independent draw from the probability distribution, meaning that the error due to the 
random effect is not only different from, but also independent of, the error at any other 
wavelength. The standard uncertainty associated with random effects is usually (but not 
always) determined by calculating the standard deviation of repeated measured values. 

The error in the measured value due to a systematic effect will be the same from one 
measured value to another. The uncertainty associated with the effect is the same for each 
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measured value and the error is the same draw from the probability distribution for all 
measured values. The standard uncertainty associated with systematic effects cannot be 
determined by repeat measurements, unless the effect is intentionally altered between 
repeats (e.g. by realigning a source multiple times using a series of different ‘extreme but 
acceptable’ alignments3 in an experiment to characterise the impact of source alignment). 

‐15 ‐10 ‐5 0 5 10 15

Known 
correction

Known 
correction

Unknown 
systematic 

error Unknown 
random 

error

Uncertainty 
associated with 
random effects

 

Figure 1: Representing a measurement where there is a known correction, an unknown systematic effect 
and random effects. 

Figure 1 represents a measurement process where there is a known correction, an unknown 
systematic effect and random effects. A measurement is made (obtaining the value 
represented by the golden circle at 6). We know of a correction – a systematic bias due to, 
e.g. a dark reading – and apply this correction, obtaining the value of the dotted circle – here 
about 3. There is still an unknown error from the true value of zero. If we make many 
measurements we get the probability distribution function shown in blue. The spread of this, 
the standard deviation of the normal distribution, is the standard uncertainty associated with 
random effects – those effects that change from measurement to measurement. Our 
measured value is a draw from this probability distribution function. If we take multiple 
measurements we obtain different draws. The average will tend towards the value at the 
peak of this distribution. When the known correction is applied, the result will be close to the 
true value, but differ from it by an unknown systematic error common to all the measured 
values. This comes from its own probability distribution function and all measured values 
have the same draw from that distribution (not shown in the figure, but this will take the 

                                                 

3 See section 3.1. 
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form of a probability distribution centred at the true value with a standard deviation equal to 
the uncertainty associated with systematic effects). 

2.6.2 Type A and Type B 

The terms ‘Type A’ and ‘Type B’ are used with uncertainty analysis. This use comes from the 
GUM, which defines: 

 2.3.2 Type A evaluation (of uncertainty) method of evaluation of uncertainty by 
the statistical analysis of series of observations 

 2.3.3 Type B evaluation (of uncertainty) method of evaluation of uncertainty by 
means other than the statistical analysis of series of observations 

Type A evaluation uses statistical methods to determine uncertainties. Commonly this means 
taking repeat measurements and determining the standard deviation of those 
measurements. This method can only treat uncertainties associated with random effects, for 
example the uncertainty associated with measurement noise.  

Type B evaluation uses 'any other method' to determine the uncertainties. This can include 
estimates of systematic effects from previous experiments or the scientist's prior knowledge. 
It can also include random effects determined 'by any other method'. For example we may 
model room temperature by a random variable in the interval from 19 °C to 21 °C – the 
temperature range of the air-conditioning settings. Similarly, we may say that a voltmeter 
with 2 digits after the decimal place has an uncertainty associated with resolution of 0.005 V 
because we know the rounding range.            

It is common to assume that ‘Type A’ evaluation is for random effects and ‘Type B’ evaluation 
is for systematic effects. This is generally, but not always, the case. For example, a ‘Type A’ 
method may be used to determine the uncertainty associated with alignment: a lamp may be 
realigned ten times and the standard deviation of those ten measurements used to 
determine an uncertainty associated with alignment4. In a later experimental set-up, 
measurements may be taken at multiple wavelengths and these combined in a spectral 
integral. For that integral, alignment is a systematic effect (the lamp is not realigned from 
wavelength to wavelength) even though the determination of the associated uncertainty was 
performed using ‘Type A’ methods. Similarly, the uncertainty associated with a random effect 
may be estimated from prior knowledge, or a measurement certificate, and thus by a ‘Type B’ 
method. 

2.6.3 Absolute and relative uncertainties 

The uncertainties given in the law of propagation of uncertainties by the symbol  iu x  are 

always standard absolute uncertainties. The term standard uncertainty means that it is a 
single standard deviation of the probability distribution function associated with that 

                                                 

4 If this is done, care must be taken to avoid ‘double counting’ any random effect due to, e.g. noise. 
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quantity. The term absolute uncertainty means that it has the same unit as the measurand. 
In other words, if the signal is in volts, the absolute uncertainty will also be in volts. If the 
distance is in metres, the absolute uncertainty will also be in metres.  

It is common in radiometric calibrations to describe relative uncertainties, with units of per 
cent. The relative uncertainty is the absolute uncertainty divided by the quantity, i.e. 

 i iu x x  . 

2.7 Writing about uncertainties 

In casual language we talk about 'averaging a set of measurements' or 'the uncertainty in the 
measurement is 0.5 %'. In metrology these words are defined carefully to reduce 
misunderstanding. We cannot 'average a set of measurements' but we can 'average the 
measured values' obtained from those measurements. The measurement has no uncertainty, 
there is an uncertainty associated with the measured value. For a non-specialist, such 
definitions can seem pedantic, as with jargon in all fields; but for a specialist, such careful use 
of words is a source of clarity. The words are defined through the VIM: the international 
vocabulary of metrology [2]. 

A measurement is made (instruments set up and value recorded) of a measurand (a quantity, 
such as radiance) to obtain a measured value (e.g. 0.5 W m-2 sr-1 nm-1) with an associated 
uncertainty (e.g. 0.5 %).  

The VIM defines measurement as the 

process of experimentally obtaining one or more quantity values that can 
reasonably be attributed to a quantity 

The most important word here is process: it defines measurement as the act of measuring. A 
measurement is not a quantity nor a result. 

The VIM defines measurand as the 

quantity intended to be measured 

In turn, quantity is the 

property of a phenomenon, body or substance, where the property has a 
magnitude that can be expressed by a number and a reference. 

Thus quantities are things like length, mass, reflectance, irradiance, instrument gain, etc. 
When you measure a quantity, that quantity is the measurand of the measurement. The 
measurement result is defined by the VIM as the 

set of quantity values being attributed to a measurand together with any 
other available relevant information 
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The "other available relevant information" refers to the associated uncertainty, perhaps 
expressed directly, perhaps as a probability density function, or perhaps implied by the 
number of digits provided with the result (the latter providing less reliable information). The 
quantity value is a 

number and reference together expressing magnitude of a quantity 

The reference usually means the unit. The measured quantity value (often shortened to 
measured value) is the quantity value that is the particular measurement result. 
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3 Understanding the Law of Propagation of Uncertainties 

The Law of Propagation of Uncertainties is given in the GUM, and was provided above as 
Equation (2.1). This section describes some basic concepts behind this law and how to apply 
it. This section is reasonably theoretical. All the concepts here will be further explained in the 
examples and case studies of subsequent chapters.  

3.1 Sensitivity coefficients 

Central to the law of propagation of uncertainties (Equation (2.3)) are the sensitivity 
coefficients, written as 

 i
i

f
c

x





 . (3.1) 

The sensitivity coefficient is a measure of how sensitive the measurand (the result),Y , 
calculated from the equation  1 2 3, , , , ,iY f X X X X   ) is to the input quantity5 iX  . In other 

words, it answers the question: “How much does this effect influence the final measured 
value?” 

The uncertainty associated with Y  due to iX  is  

  _ dueto_ ::i iy x y x i
i

y
u u u x

x


 


.  (3.2) 

So, for example, if we calculate a signal as a light reading minus a dark reading, we have the 
equation 

 S light darkV V V   . (3.3) 

The uncertainty associated with the signal due to the light reading is 

    
light light_ dueto_ :: light light

light

1
S S

S
V V V V

V
u u u V u V

V


   


 . (3.4) 

There are three methods for determining sensitivity coefficients and they are all equally valid 
and all approved by the GUM. These are: 

 Mathematically (differentiating the measurement equations) 
 Numerically (modelling through an instrument model in software, or changing the 

input parameters to the measurement equation) 

                                                 

5 Note, as described in Section 2.5 that in formal mathematical notation of the Law of Propagation of Uncertainties, a capital 
letter is used to denote a quantity (measurand) and a small letter is used to denote a specific measured value of that 
measurand. This notation is not used in later stages of this book, where traditional physics notation is used, e.g. that radiance 

is represented by L  . 
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 Experimentally (changing the effect in the lab and seeing how much the measured 
value changes) 

In the development of a real-world uncertainty budget, all three will be used.  

Through differentiation (mathematically): Where the measurement equation shows a 
straightforward relationship, then often the simplest method is to differentiate. This is the 
partial derivative term in the Law of Propagation of Uncertainties (in the GUM).  

Consider the radiance of a white diffuser panel illuminated by an FEL6 lamp. The radiance of 
the diffuser tile, viewed at an angle of 45° and for normal incidence illumination, is given by 

 
2

FEL 0 :45 cal
s 2

use

E d
L

d




   (3.5) 

where sL  is the source radiance, FELE is the lamp irradiance and 0 :45   is the diffuser radiance 

factor. The calibration distance for the FEL lamp is cald  and it is set a distance used  from the 

diffuser. Note that here the wavelength dependence is not explicitly described, in practice 

 sL  ,  FELE  and  0 :45    are all functions of wavelength,  . 

Thus, the sensitivity coefficient of the diffuser radiance due to the irradiance of the lamp is 

 
FEL

s

FEL
E

L
c

E





  (3.6) 

From Equation (3.5) we calculate this as 

 
FEL

2
s 0 :45 cal

2
FEL use

s

FEL

.

E
L d

c
E d

L

E



 

 




  (3.7) 

The first line calculates the derivative. The second line shows that this can be expressed more 
simply. This is significant because the meaning of the sensitivity coefficient is that the 
uncertainty associated with the diffuser radiance, due to the uncertainty associated with the 
lamp irradiance is 

 
s FEL FEL FEL:L E E Eu c u  . (3.8) 

This means that the absolute uncertainty (units [W m-2 sr-1 nm-1]) associated with the lamp-
diffuser radiance due to the lamp irradiance is the sensitivity coefficient times the uncertainty 
associated with the lamp irradiance (which has units [W m-2 nm-1]). If the simpler, second line 
of (3.7) is used, this gives 

                                                 

6 FEL is an ANSI standard designation denoting a specific 1 kW double-coiled tungsten halogen lamp, operating at 110 V, 
with a specific base. The letters are an arbitrary code and not an acronym. 
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s FEL FEL

s
:

FEL
L E E

L
u u

E
   (3.9) 

Rearranging this, gives 

 s FEL FEL:

s FEL

L E Eu u

L E
   (3.10) 

i.e. the relative uncertainty associated with radiance of the lamp-diffuser (usually with 
uncertainty expressed in %) due to the lamp irradiance is equal to the relative uncertainty 
associated with the FEL irradiance (also expressed in %). 

A similar relationship can be found for all the other parameters. Note that for the distance of 
use (the lamp to diffuser distance) 
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3
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

  

 





  (3.11) 

And therefore 

 s use use:

s use

2L d du u

L d
   (3.12) 

The relative uncertainty associated with the radiance of the lamp-diffuser (in %) due to the 
lamp-diffuser distance is twice7 the relative uncertainty associated with the lamp-diffuser 
distance (also in %). 

Through modelling (numerically): Sometimes the most appropriate way to determine 
sensitivity coefficients is through modelling. This may be from a simple realisation of the 
measurement equation in a spreadsheet program, or it may be from a considerable piece of 
software that models the optical aberrations, pixel cross-talk, etc. for a multispectral imager. 
An example of the latter is given in the sections below.  

A simple measurement equation or model may be used to determine the sensitivity 
coefficients numerically. This may be useful if the equation is difficult to differentiate 
analytically. Consider as a simple example, the equation (3.5). A spreadsheet can be set up to 
calculate the lamp-diffuser radiance from the input parameters. Then each parameter in turn 
can be altered by its uncertainty and the change in lamp-diffuser radiance recorded. It is 
important here that only one parameter is changed at a time. The aim is to determine the 
sensitivity of the calculated result to an uncertainty associated with a single parameter. If 

                                                 

7 The minus sign in front of the 2 is ignored here because it will be squared. The negative sensitivity coefficients will be 
needed when correlation is taken into account. 
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multiple parameters are changed at the same time, then this would imply a correlation 
between them (e.g. that increasing one automatically increases the other). Changing one 
parameter at a time provides a sensitivity coefficient to that single parameter.  

An alternative modelling approach, Monte Carlo simulation, is described in Appendix 
9Appendix B. In Monte Carlo simulation all the parameters are altered simultaneously, but by 
a random amount, with the random number drawn from the probability distribution 
described by the uncertainty. Many (usually tens of thousands of) simulations are run; each 
simulation having different uncertainty draws. The advantages of Monte Carlo simulation are 
that correlations can be more easily dealt with, that statistical parameters can be determined 
from the end results and that the probability distribution functions do not have to be 
Gaussian (and therefore realistic probability distribution functions can be included). The main 
disadvantages are the computational time and the fact that individual sensitivity coefficients 
are not determined as everything is altered simultaneously. This means that the 
experimentalist does not easily obtain an understanding of what the most significant 
uncertainties are. 

Through laboratory testing (experimentally). In some cases it is not possible to write the 
full measurement equation. For example, the sensitivity to a lamp alignment would have to 
be written as some function of the tilt and roll angles of the lamp, as well as the vertical and 
horizontal displacement of the lamp. Similarly, the lamp stability effect is a function of the 
time since calibration, whether the lamp has been transported, etc. These functions cannot 
be written out as explicit equations that can be differentiated or used in a mathematical 
model. Instead, the sensitivity is determined experimentally.  

Experimental methods are based on repeat measurements where the effect is changed and 
the effect on the measured result is analysed. This is very good for situations where the effect 
can be easily controlled experimentally and there is no easy mathematical model relating the 
effect to the measurand.  

The sensitivity to alignment, for example, may be determined by realigning the lamp ten 
times and comparing the standard deviation of those ten measured values with the standard 
deviation of ten measured values where the lamp is not realigned between measurements8. 
This would be an example of a Type A determination of an uncertainty (which, in the final 
measurements could be a systematic effect if the lamp is not realigned then, or a random 
effect, if the lamp is realigned). 

Sometimes, a more systematic approach may be preferred. If the room temperature may vary 
from 19.5 °C to 20.5 °C, then it may be appropriate to determine an instrument’s responsivity 
(e.g. spectrometer’s gain) at 17 °C, 18 °C, 19 °C, 20 °C, 21 °C, 22 °C to check the sensitivity to 

                                                 

8 The uncertainty associated with the alignment would then be calculated as  1 22 2
align realigned not_realignedu s s   , so as 

not to ‘double count’ the straightforward measurement repeatability. Note also that the measured values obtained through 
multiple measurements without realigning the lamp are correlated with each other because of the common alignment. 
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temperature and whether this is linear across a temperature range wider than that which is 
likely in practice. This can be done, for example, by wrapping the spectrometer with soft 
piping, through which water at each temperature in turn is sent. The spectrometer is set to 
view a stable source while its temperature is changed and the change in readings is 
determined. 

Consider the case of estimating the sensitivity of the lamp irradiance to lamp current by 
experimentally varying the current. If we make too small a change in lamp current then we 
will not get a reasonable estimate of the effect for two reasons. First, we will not be able to 
control the current sufficiently well to get a clear separation of the two measured currents. 
For example if the current is stable to (8.100 ± 0.004) A, then making a measurement at 
(8.104 ± 0.004) A would cause too much overlap between the actually provided currents (in 
both situations a current of 8.102 A could naturally arise). For this reason it is sensible to 
change the current by at least ten times the measured effect. 

Secondly, too small a change may mean any effect is hidden behind the noise due to other 
effects. For example, a change of 40 mA may affect the measured irradiance imperceptibly 
compared to the more dominant effect of detector noise. Thus, it is important that before 
such experimental determinations of a sensitivity coefficient are carried out, the natural 
repeatability of the measurements is determined. In this case it would be appropriate to 
make 5 consecutive measurements with a lamp current of 8.100 A, before repeating, again 
perhaps multiple times, with a lamp current of 8.140 A. If the change as a result of the 
change in current is much smaller than the noise caused by other effects, then there are 
several options, we could 

 consider the uncertainty associated with stability in the lamp current to be an 
insignificant uncertainty component  

 average several measurements at each of the currents used in the sensitivity 
coefficient investigation to reduce the impact of the noise on the measurements 

 increase the current step used until an effect is seen, for example the effect may be 
smaller than the noise with a 40 mA change, but larger than the noise for a 100 mA 
change. 

Any of these approaches may be valid.  

As well as the risks of too small a current change, it is necessary to consider the risk of too 
large a current change. As well as the extreme examples, e.g. if the lamp current is increased 
too high the lamp filament may be destroyed or its calibration may be changed, a more 
modest and safe change may also provide unreliable results. The process described above: 
making a change ten times larger than that expected and dividing the observed change in 
the irradiance by ten to obtain a sensitivity coefficient, assumes that the process of change is 
linear. This is not the case with a lamp current: a doubling of the lamp current does not lead 
to a doubling of lamp irradiance. For small changes, of around 100 mA, linearity may be a 
reasonable approximation, but for larger changes, it is not.  
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It is therefore sensible to make measurements at a slightly smaller and a slightly larger 
current, thus providing three data points and giving a better understanding of how linear the 
lamp's behaviour is over the range. Similar considerations apply for all sensitivity coefficient 
examples. It is important to make the smallest possible change such that the observed effect 
can "come out of the noise", i.e. be seen as a real effect, but without changing the underlying 
behavioural relationship that is being investigated. 

3.2 Adding in quadrature 

From the sensitivity coefficients we determine the uncertainty associated with the measurand 
(the answer calculated from the measurement equation) due to each component in turn. The 
Law of Propagation of Uncertainties then combines these. 

If there is no associated correlation (i.e. if all the components are independent of each other), 
then only the first half of Equation (2.3) needed 

    2 2 2
c

1

n

i i
i

u y c u x


 . (3.13) 

This adds uncertainties in quadrature. That means that the uncertainty associated with the 
measurand due to each component in turn is squared, they are summed and finally a square 
root is taken. The reason that uncertainties are added in quadrature is that it is statistically 
improbable that all the errors (i.e. all the draws from the probability distribution functions 
described by the uncertainties) are all at the extreme of the probability distribution function 
and in the same direction. It is more likely that some will increase and others decrease the 
measured value and that some errors will be smaller than their average value and others 
larger. Adding in quadrature provides a fair combination that is statistically robust9. 

Consider two of the examples given in the previous section. First the signal calculated from a 
light and dark reading (equation (3.3)). The sensitivity coefficients are 

 s s

light dark

1; 1
V V

V V

 
  

 
 . (3.14) 

Therefore, 

              2 22 2 2 2
S light dark light dark1 1u V u V u V u V u V      . (3.15) 

Note here that these are absolute uncertainties and all in the units of the measurand, e.g. 
volts (or digital numbers, or amperes). 

                                                 

9 It is a principle of statistics that it is variances that are added in combining effects. 
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For the lamp-illuminated diffuser tile, equation (3.5), the calibration distance is assumed to 
have no associated uncertainty (it is given on the provided certificate), and the other terms 
have the relative sensitivity coefficients calculated as for equations (3.7) and (3.11), thus 
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       
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  (3.16) 

The second line provides a version in terms of relative uncertainties, expressed in units of 
percent. 

3.3 Taking an average of independent measured values 

3.3.1 Applying the law of propagation of uncertainties 

Consider the mean, M , of three independent10 measured values A , B  and C . This is 
calculated as 

 
3

A B C
M

 
   (3.17) 

The sensitivity coefficients are therefore all 
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  
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 . (3.18) 

We can also assume that these three measured values have the same associated 
uncertainty11 

        u A u B u C u x    . (3.19) 

Therefore, applying the law of propagation of uncertainties 
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  (3.20) 

                                                 

10 Independent here means that the measured values are taken separately and have no associated correlation. If there are 
systematic effects, this should be considered separately (Section 3.4). 
11 If the three measurements are identical, it is a reasonable assumption that they have the same associated uncertainty. If 
they are not identical (taken in different ways) and there are known differences in the uncertainty associated with different 
methods, then it would be sensible to use a weighted mean, rather than a simple mean. 
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Hence, taking a mean of three readings reduces the uncertainty associated with a single 
reading by the square root of three.  

Consider the signal calculated from the light and dark readings, but this time we assume N  
light readings and M  dark readings. Thus 

 s light, dark,
1 1

1 1N M

i j
i i

V V V
N M 

    . (3.21) 

To apply the law of propagation of uncertainty to Eq. (3.21), we need to determine the 
sensitivity coefficients. These are 
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  (3.22) 

If we treat the N  light readings as random draws from the same probability distribution 
function (i.e. they are independent realisations of the light reading), then we can say that for 
all readings,  

 light, lightiu u ;  (3.23) 

i.e. they have the same uncertainty. And similarly, 

 dark, darkju u  . (3.24) 

Applying the law of propagation of uncertainties to Eq. (3.21), we obtain 
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  (3.25) 

In other words, in order to calculate the uncertainty associated with the measured signal, the 
uncertainty associated with a single light reading is divided by the square root of the number 
of light readings and added in quadrature with the uncertainty associated with a single dark 
reading divided by the square root of the number of dark readings. 

Note first, that 
lightVu  and 

darkVu are absolute uncertainties, with units ([volts], or [Digital 

Numbers]). If the light signal has a value of 25000 DN ± 500 DN, and the dark signal has a 
value 1000 DN ± 10 DN, and assuming these uncertainties are already reduced by the square 
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root of the number of measurements averaged, then the signal is  25000 1000  DN  

 2 2 500 10  DN  , or 24000 DN ± 500.1 DN. Expressed in relative terms, this uncertainty 

is 500.1 24000 2.1% . 

3.3.2 Averaging enough readings 

In order to apply the law of propagation of uncertainties, it is necessary to obtain a good 
estimate of 

lightVu and 
darkVu . Assuming N and M  are sufficiently large12, then the standard 

deviation of the N and M readings, gives a good estimate of 
lightVu and 

darkVu respectively. 

Where, for example, 1000 readings are averaged using an automatic data acquisition 
process, then the standard deviation of those readings is a good estimate of the uncertainty 
associated with the individual measured values, due to random effects13 (effects that vary 
from one reading to the next) because there are enough readings. 

Sometimes, however, N and M are relatively small. This is true wherever a manual process is 
involved (for example where a lamp is realigned from measurement to measurement), or 
when a measurement is slow. When N and M are relatively small, then the standard 
deviation calculated from the measured values provides an unreliable estimate of the 
uncertainty associated with each individual measured value. The GUM deals with this through 
the Welch-Satterthwaite Equation (see Section 4.10). The planned revision to the GUM will, 
however, treat this in a different way, that is, perhaps more helpful for an intuitive 
understanding of whether sufficient measurements have been taken. In the GUM revision, the 
squared standard uncertainty associated with the mean of the light readings would be 
calculated from the standard deviation, lights  , using 
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  (3.26) 

This equation estimates the standard variance (squared uncertainty) for the full distribution 
based on a squared standard deviation calculated from the N measured values. It increases 
it ‘a bit’ because a few points are may underestimate the standard deviation. Note that the 

 1 N  term here is the same term as in Eq. (3.25). 

Clearly, the larger the value of N , the closer the uncertainty associated with the mean is to 

the standard deviation of the measurements divided by N . If 5N  , then the standard 

                                                 

12 But not so large that drift dominates, see the discussion on Allan Variance in Section 3.3.3 
13 Note that 1000 readings taken in a short time period will have a standard deviation that depends only on short-term random 
noise. Any longer term fluctuations will not be included, nor will any effects that are common to all those 1000 readings, 
such as those due to e.g. current settings on a lamp used, or the alignment of a diffuser panel. It may be that even where 1000 
readings are taken simultaneously, there will need to be a smaller number (say 5-10) separate averages of those 1000 
readings taken over a longer time interval, or with lamps turned off and back on, or with the diffuser panel realigned. There 
is almost always a set of measurements whose standard deviation is determined for a very small number of measured values. 
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deviation is multiplied by ~1.41 , if 10N   , then it is multiplied by ~1.13, and if N  is 25, 
then it is multiplied by ~1.04. If N is 1000, then the standard deviation is multiplied by 1.001. 

It is always preferable to use the best possible estimate of the standard deviation, from as 
many measurements as possible, so that the correction of Eq. (3.26) is as small as possible. It 
may not be practical, however, to make 25 or more measurements on every occasion. Under 
those circumstances, there are several things that could be done to obtain a better estimate 
of the standard deviation, either individually or combined: 

 In the case of a spectral measurement, data from adjacent wavelength points can 
provide a better estimate. First, determine a standard deviation on a wavelength-by-
wavelength basis. This will have some structure because of the random noise. Smooth 
out this structure using the data from neighbouring wavelengths. If 5N   at a single 
wavelength, then using data from 5 neighbouring wavelengths to ‘smooth out’ the 
standard deviation will effectively increase N  to something closer14 to 25. 

 During a ‘commissioning phase’ for your instrumentation take 25 readings. Compare 
the standard deviation of the 5 readings taken on a single day to that of the 25 
readings taken during the commissioning phase to check that it’s still valid, but use 
the standard deviation of the 25 commissioning readings as your best estimate of the 
uncertainty of a single reading. 

 Determine the differences of the 5 readings to the average (mean) of those five 
readings. Do this on 5 successive measurement days. Take the standard deviation of 
the differences for all five days15. Using the difference from the daily mean takes out 
the day-to-day variation and looks only at the variability.  

Any of these options would generally be preferable to increasing the uncertainty using 
Equation (3.26). Note that these will give you an estimate of the standard uncertainty 
associated with a single reading. The uncertainty associated with the mean of today’s 5 
readings will be the uncertainty associated with a single reading divided by the square root 
of 5 (the number of measurements taken today). 

3.3.3 Allan deviation/Allan variance 

The discussion above assumes that it is always preferable to average more and more 
measurements. Equation (3.25) reduces the uncertainty by the square root of the number of 
measurements taken. Consider an extreme example – if measurements are taken every 
minute for a week, would this mean the uncertainty was effectively zero? Intuitively we 
understand that this is not the case and there are two reasons for this. The first is that there 
may be systematic effects common to all the measurements. The second is because the 
instruments are likely to drift over the week. There comes a time when the noise is no longer 

                                                 

14 How much closer depends on the smoothing algorithm used. Do not worry too much about the exact value of N , the point 
here is to make it ‘sufficiently large’ to give a good estimate and for the correction of Eq. (3.26) to be small. 
15 Again 25N    in this example. 
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‘white noise’ that can be averaged, but some form of drift, the effect of which just gets worse 
with averaging over a longer and longer period. 

The Allan Variance [3] is a means of determining whether the noise is ‘white noise’ or drift (or 
something else). Calculating the Allan Variance requires a series of measurements at regular 
time intervals t  . The Allan Variance calculates the difference between successive data 
points, squares them and takes the average, before dividing the answer by two: 

        2 2 22
2 1 4 3 1

2

1 1

2 N NN
t y y y y y y 

            
   (3.27) 

The pairs of data are then averaged, so now you have half as many data points with a time 
interval of 2 t  and the Allan Variance is calculated again. This is repeated, each time 
averaging the pairs that were used before. After this has been completed, the data is plotted 
with the vertical axis giving the Allan Variance and the horizontal axis giving the time 
interval. Both axes should be represented on a log scale. For white noise, the Allan deviation 
lies on a straight line on this log-log plot, with a slope of -0.5, corresponding to a reduction 
in the uncertainty according to the square root of time. However, if the signals are 
accompanied by 1 f  noise or drift (random walk), the slope will become positive. This 

suggests that averaging for times greater than the Allan Deviation minimum increases rather 
than decreases uncertainty. 

Free software for evaluating 
the Allan Variance is 
available16. This provides 
plots as shown in Figure 3. In 
this example, the signal is 
stable with white noise for up 
to ~6000 s, after which drift 
dominates and further 
averaging makes the 
situation worse. From this 
graph we can see that if we 
average for 100 s the 
uncertainty associated with 
the mean is ~0.07 %, if we 

average for 1000 s, the 
uncertainty associated with 
the mean is ~0.03 %.  

 

                                                 

16 http://www.alamath.com/ 

Figure 2 Output plot from the Allan Variance software showing the
Allan variance of a very stable signal 
Figure 3 Output plot from the Allan Variance software showing the
Allan Variance of a very stable signal. 
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3.4 Taking an average of partially correlated measured values 

3.4.1 Correlation 

Correlation is introduced whenever there is something in common between multiple 
measured values due to a common effect in the measurement process. When there is 
something in common, then that correlation needs to be taken into account. There are two 
ways of dealing with that correlation in the law of propagation of uncertainties. The first is to 
describe the correlation explicitly in the measurement equation; the second is to use the 
second half of the law of propagation of uncertainties. Both are described here. 

3.4.2 Analytical approach by modelling out the correlation: absolute uncertainties 

Consider the situation where a lamp irradiance is determined by averaging three measured 
values of its irradiance. The measured values are taken sequentially and the lamp is not 
realigned between measurements. We can model the result of the i th measurement as 

 Ti iE E R S    . (3.28) 

Here, TE  , is the (unknown) true irradiance of the lamp. iR  is the random error in the i th 

measurement. It is a draw from the probability distribution described by the uncertainty 

 u R ; the uncertainty associated with the random effects. Similarly, S  is the systematic error 

in all the measurements. It is a draw from the probability distribution described by the 
uncertainty  u S ; the uncertainty associated with systematic effects. The expectation values 

of R  and S  are zero (we are not applying a correction). However there is an uncertainty 
associated with the measured value due to these effects.  

The R  error comes from all random effects – probably predominantly due to measurement 
noise, but also source stability, temperature fluctuations etc. The S  comes from all 
systematic effects that didn’t change between measurements; for example, alignment or the 
calibration of the reference lamp. If these uncertainties are determined separately, then the 
uncertainty associated with S  can be calculated as the quadrature sum of the individual 
uncertainties. 

The mean of the three measured values is  

  M 1 2 3 3E E E E     (3.29) 

which we can write, by applying (3.28) as 

 1 2 3
M T 3

R R R
E E S

 
     (3.30) 

We now have an equation with four independent variables: 1 2 3, , ,R R R S  and, since these are 

independent, i.e. uncorrelated, we can apply the first half of the law of propagation of 
uncertainties 
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      
2

2 2
M

3

u R
u E u S

 
  
 

 . (3.31) 

The uncertainty associated with random effects is reduced by the square root of the number 
of measurements; the uncertainty associated with systematic effects remains unchanged by 
the averaging. This is as we may intuitively expect. No matter how many measurements we 
make, we cannot reduce the uncertainty associated with systematic effects by averaging. 

3.4.3 Analytical approach by calculating covariance: absolute uncertainties 

In order to understand the second part of the law of propagation of uncertainties it is worth 
deriving Equation (3.31) using the full law of propagation of uncertainties, Equation (2.1). To 

do this, we need to determine the covariance  ,i ju E E  associated with a pair of measured 

values, in this case a pair of irradiance values. The covariance is a measure of the uncertainty 
common to the two measured values. And with the model Equation (3.28) this is  u S . 

Therefore  

    2, ;i ju E E u S i j   . (3.32) 

Thus, including the sensitivity coefficients from (3.18), the term used in the second part of 
Equation (2.1) is 

    2M M 1 1
,

3 3i j
i j

E E
u E E u S

E E

 
 

 
 . (3.33) 

The uncertainty associated with any individual irradiance value is given by 

      2 2 2
i iu E u R u S   . (3.34) 

The law of propagation of uncertainties in full for this example is 

 

       

     

2 2 2
2 2 2 2

M 1 2 3

2 2 2

1 2 1 3 2 3

1 1 1

3 3 3

1 1 1
2 , 2 , 2 , .

3 3 3

u E u E u E u E

u E E u E E u E E

             
     

           
     

  (3.35) 

Combining (3.33), (3.34) and (3.35) gives 
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       

   

   

2 2 2
2 2 2 2

M

2 2
2

2

2

1 1 1
3 3 6

3 3 3

1
9

33

.
3

u E u R u S u S

u R
u S

u R
u S

            
     

       
  

 
  
 

  (3.36) 

Which, as expected, is the same as Equation (3.31). 

3.4.4 Analytical approach by modelling out the correlation: relative uncertainties 

The example given above assumes that the systematic error is an additive effect, with the 
error and uncertainty having the same units as the measurand (i.e. [W m-2 nm-1]). In 
radiometric measurements uncertainties are more likely to be relative uncertainties in % and 
errors have a multiplicative effect. Therefore instead of Equation (3.28), the error model is 
better described by 

   T 1 1i iE E R S     (3.37) 

where the error terms iR  and S  have an expectation value of unity (one), and a relative 

uncertainty associated with that. In this case the mean is 

   1 2 3
M

3
1

3T

R R R
E E S

      
 

 . (3.38) 

Once again, we have an equation with four independent variables, so we can use the first 
part only of the law of propagation of uncertainties. The sensitivity coefficients are 

 
 

 

M M

TM M

1 2 3

1

1

3 3i

E E

S S

E SE E

R R R R




 


 

   

  (3.39) 

and the law of propagation of uncertainties gives 

           
2 2

2 2 2 2 2M M
M 1 2 3

1 2 33 1

E E
u E u R u R u R u S

R R R S

              
 . (3.40) 

And therefore, making the reasonable assumption that        1 2 3u R u R u R u R   , 

 
   

 
 2 22

M
2

M 1 2 3

3

13

u E u R u S

E SR R R

   
         

  (3.41) 
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To take this a step further, we have to understand that if the expected value of 0iR   , then 

the term 1 2 3 0R R R    . In taking the average, that is the assumption that we are making. 

Similarly17, 0S  ; thus 

 
     

2 2

M 2

M 3

u E u R
u S

E

   
    

   
  (3.42) 

i.e. for a multiplicative model with relative uncertainties, the relative uncertainties behave 
exactly as the absolute uncertainties for an additive model in (3.31). 

3.5 Covariance term in the law of propagation of uncertainties 

3.5.1 Covariance 

In order to apply the law of propagation of uncertainties, we need to deal with correlation in 
one of the following manners: 

 By writing the correlation explicitly into an error model and rearranging the 
measurement equation so that the quantities are no longer correlated, this is the 
approach described in Sections 3.4.2 and 3.4.4 

 By calculating the covariance from an error model. This is the approach described in 
Section 3.4.3 above and 3.5.2 

 By determining the correlation experimentally or numerically as described in Section 
3.5.3 

 By obtaining a range of possibilities for the covariance as described in Section 3.5.4 

Note that as with Type A and Type B evaluations of uncertainty, the first and second of these 
are a Type B evaluation of covariance – the covariance is estimated by an explicit 
measurement model. The third method is a Type A evaluation of uncertainty – statistical 
method are applied to the data itself to estimate the covariance.  The final method does not 
estimate the covariance, but it does give the opportunity to consider it ‘negligible’ or 
‘significant’ and to decide whether further analysis is required. 

In Section 3.4 the emphasis was on averaging similar measured values (e.g. combining 
multiple values for the lamp irradiance).  Here correlation related to whether those individual 
measured values were obtained under similar or different conditions, e.g. was the lamp 
realigned between measurements (if so, lamp alignment was a random effect with no 
associated correlation, if not, then lamp alignment is a systematic effect which introduces a 
correlation).  

                                                 

17 This is the assumption we are making, that our best estimate of the systematic effect is that there isn’t one. If we had a 
better estimate, we would remove it with a correction. After all corrections have been applied, there is some unknown 
systematic error that is as likely to be positive as negative. We take it as having an expected value of 0 with an uncertainty 

associated with that of  u S . 
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It is also important to estimate correlation between measured values from different 
parameters. For example, consider a spectral integral (from for example the convolution of a 
spectral response function and a scene radiance). Here values from different wavelengths are 
combined. Some components in the uncertainty budget (sources of uncertainty) will be 
common from one wavelength to the next, and other components will vary from wavelength 
to wavelength.  

Correlation can also occur between effects that are different. For example if a spectrometer 
and a filter are both temperature sensitive, then the responsivity of the spectrometer may be 
correlated with the filter transmittance through the laboratory temperature. Sometimes such 
correlations can be explicitly described in a measurement equation (e.g. by including a term 
that is a function of temperature in both places), and then the Type B methods can be used 
for these examples too. Sometimes such a correlation can only be estimated by Type A 
methods, from a statistical analysis of the measurement data itself.  

3.5.2 Covariance from an error model 

The covariance can be calculated from an error model by seeing what terms are common to 
e.g. equations being combined or measured values being averaged. Sometimes the 
correlation can be written explicitly so that the terms can be treated as independent, as in 
Sections 3.4.2 and 3.4.4. There are occasions, however, where it is essential to describe the 
covariance analytically and in the form of a covariance matrix (See Appendix A). A covariance 
matrix is needed where data is manipulated through a modelling process, or, for example, a 
least squares algorithm is used. In these cases textbooks can provide information on how to 
manipulate a covariance matrix in, for example, the least squares algorithm. What is missing 
is how to form a covariance matrix from a typical experimental uncertainty budget in the first 
place. 

To form such a covariance matrix it is necessary to form an error equation, similar to that of 
Equation (3.28). In such an equation, iR   represents the unknown random error which is an 

unknown draw from the probability distribution described by the uncertainty associated with 
(a combination of) random effects. To obtain that uncertainty it is necessary to add in 
quadrature the uncertainties associated with individual random effects (e.g. noise, source 
stability, etc). Similarly, S  represents the unknown systematic error which is an unknown 
draw from the probability distribution described by the uncertainty associated with (a 
combination of) systematic effects. To obtain that uncertainty it is necessary to add in 
quadrature the uncertainties associated with individual systematic effects (e.g. system 
alignment, calibration certificate values etc).  

For the error model of the form of (3.28) the covariance is given by (3.32). In this case the 
uncertainties are in the same units as the measured value. Where there is a relative model 
and uncertainties in percent, the covariance has to include the actual value. Thus for the 
relative error model (3.37) the covariance is 

        2, ;i j i j i ju E E u S E u S E u S E E i j    . (3.43) 
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i.e. the covariance is the squared relative uncertainty that is common (and in percent) 
multiplied by the irradiance values at the two values that are being combined. 

Error models can be made as complex as required to describe the correlation between 
measured values. Consider, for example the more complex error model 

    T 1 1 1i i i iE E R S c F r s        (3.44) 

which has a random multiplicative error, iR , a systematic multiplicative error, S , and a 

systematic multiplicate error, F , that has a measurement dependent sensitivity coefficient18 

ic  , as well as two additive errors – one random, ir   and one systematic, s . In this case the 

covariance is given by 

        2 2 2, ;i j i j i j i ju E E u S E E u F c c E E u s i j      (3.45) 

The random effects are independent and do not contribute to the covariance. The relative 
uncertainties associated with multiplicative systematic effects are multiplied by the measured 
value to convert them to absolute uncertainties, and where appropriate the sensitivity 
coefficient. The absolute uncertainties associated with additive systematic effects are used 
directly.  

3.5.3 Estimating the covariance from experimental and modelled data 

In some situations it is appropriate to estimate the covariance from data. This would be the 
case when you assume there must be some correlation between separate variables. For 
example, both an instrument’s responsivity and a filter’s transmittance may be sensitive to 
room temperature, and therefore the two parameters may be correlated if they were 
determined at the same time. In this case, the covariance can be calculated statistically from 
the pairs of data.  

The correlation coefficient,  ,r x y ,  is calculated from  

  
1

1
,

1

n
i i

i X Y

X X Y Y
r x y

n s s

   
      

   (3.46) 

where n  is the number of data pairs  ,i iX Y , X  is the mean of the x  values and Y  is the 

mean of the y  values and ,sX Ys  are the standard deviations of the x  values and y  values 

respectively. The covariance is then calculated as 

        , ,u x y u x u y r x y   (3.47) 

                                                 

18 For example, if the different values are at different wavelengths, this could correspond to something like lamp current 
which has an associated uncertainty and an error in lamp current will affect all wavelengths in the same direction, but will 
have a bigger impact on the short wavelengths than on the long wavelengths.  
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where, as usual, the uncertainties correspond to the absolute standard uncertainties (in the 
same units as the measured values – if relative standard uncertainties are known, these 
should be multiplied by the average measured values).  

This equation can also be used to determine the covariance of a pair of data points obtained 
through Monte Carlo simulation, see Appendix B. 

3.5.4 Range of possibilities for correlation 

Generally speaking, there are three extreme situations: 

 Entirely uncorrelated data (the term  ,r x y  in Eq. (3.47) is 0) 

 Entirely correlated data (the term  ,r x y  in Eq. (3.47) is +1) 

 Entirely correlated data (the term  ,r x y  in Eq. (3.47) is -1) 

If it is not clear what the correlation coefficient is, it is appropriate to consider the extreme 
cases and say that the uncertainty lies within the range of those extremes. Where the 
sensitivity coefficients for both parameters are positive (i.e. a positive error in each parameter 
means a positive error in the result calculated from the measurement equation), or both 
negative (i.e. a negative error in each parameter means a positive error in the result), then 
correlation will always increase the uncertainty relative to uncorrelated data. Where the 
sensitivity coefficients are opposite signs (one is positive and the other negative), then the 
correlation will decrease the uncertainty relative to uncorrelated data.  

Consider the very simple equation 

 meas offsetx x x    (3.48) 

which can represent, for example, a distance between two apertures being a measured 
distance plus an offset (e.g. for the thickness of the aperture if the measurement is to the 
back surface). Here the sensitivity coefficient is +1 for both terms  meas 1x x    . What this 

means is that correlation between the two values represents ‘making the same error twice’ 
and it will increase the associated uncertainty. Therefore the ‘worst case scenario’ is for the 
two terms to be entirely correlated and the ‘best case scenario’ is for them to be entirely 
uncorrelated. For this equation, the full law of propagation of uncertainties is 

 
     

     

2 1
2 2
c

1 1 1

2 2
meas offset meas offset

2 ,

2 , .

n n n

i i j
i i ji i j i

f f f
u y u x u x x

x x x

u x u x u x x



   

   
   

  

 
    (3.49) 

Note that,  meas offset,u x x is given by Equation (3.47), and since here we are assuming 

 meas offset, 1r x x  ,      meas offset meas offset,u x x u x u x . 

On the other hand, consider the simple equation  
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 signal light darkV V V    (3.50) 

i.e. that a signal is a light reading minus a dark reading. Here, the sensitivity coefficient is +1 
for the light reading and -1 for the dark reading. What this means is that correlation between 
the two values will be ‘cancelled out’ and it will decrease the associated uncertainty. This 
makes sense, because if, for example there was a common offset error in both the light and 
dark readings, subtracting the dark reading will remove the error. Thus, the full law of 
propagation of uncertainties is 

 
     
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

   

   
     

 

 
  (3.51) 

where the minus sign comes from the negative sensitivity coefficient. Note that,  light dark,u x x

is given by Equation (3.47), and since here we are assuming  light dark, 1r x x  , 

     light dark light dark,u x x u x u x . 
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4 The steps to an uncertainty budget 

4.1 Steps 

This course considers eight steps to an uncertainty budget. Other writers have suggested 
somewhat different steps; however, what is common is a general framework around three 
areas: 

 The first few steps relate to understanding the problem  
 The second set of steps relate to determining the formal relationships – the 

measurement equation and sensitivity coefficients 
 The final steps relate to ‘doing the mathematics’ and propagating the uncertainties 

Most uncertainty textbooks and training emphasise the final steps – the Law of Propagation 
of Uncertainties, and how to ‘do the mathematics’ in calculating sensitivity coefficients and 
propagating uncertainties.  

There is often very little guidance on how to do the early stages, even though they are often 
both the most challenging and, arguably, the most important part of uncertainty analysis. 
This is because the techniques are usually very specific to individual measurement fields. 
Fortunately, the skills required for the first step are the skills that an experimentalist who 
understands his or her measurement facility will naturally have. This course attempts to 
provide examples, questions and ways of approaching a problem that each participant can 
apply to his or her own laboratory. 

The steps are introduced here, and then applied to case studies in the subsequent sections 
of this textbook. 

 Understanding the problem 
o Step 1: Describing the traceability chain 
o Step 2: Writing down the calculation equations 
o Step 3: Considering the sources of uncertainty 

 Determining the formal relationships 
o Step 4: Creating the measurement equation 
o Step 5: Determining the sensitivity coefficients 
o Step 6: Assigning uncertainties 

 Propagating the uncertainties 
o Step 7: Combining and propagating uncertainties 
o Step 8: Expanding uncertainties  

4.2 Step 1: Describing the traceability chain 

The purpose of the first three steps is to get a very clear understanding of the uncertainty 
‘problem’. The emphasis should be on obtaining the overview and seeing where the sources 
of uncertainty come from. It is easy to become overwhelmed at this stage and to get worried 
about whether an uncertainty is being double counted, what might be being missed out (the 
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unknown-unknowns), being concerned that it’s not clear which step an uncertainty 
component comes in at.  

The first stage is to determine the traceability route. That is to show, preferably 
diagrammatically, the route from the measurements being performed to the SI (or, if 
appropriate, community reference). 

 
Figure 4 Simple traceability 
chain for an FEL lamp 
calibration of an instrument 

For example, consider calibrating an instrument that measures 
irradiance (e.g. a down welling irradiance meter for ocean 
colour). The instrument may be calibrated in a laboratory in 
comparison with an FEL lamp.  
 
An example traceability chain is provided here. Here, a test and 
measurement laboratory (perhaps the instrument manufacturer) 
obtains an FEL lamp from a National Metrology Institute (NMI). 
In order to avoid over-use of the NMI-provided lamp, the test 
and measurement laboratory may then use it to calibrate a 
working standard lamp, which is then used to calibrate the 
instrument. 
 
This process obtains the hierarchical calibration chain. The aim 
of the hierarchical approach is to work systematically from the 
end to the ‘beginning’ up all the necessary branches of the 
traceability tree19. How far back this process is taken depends 
on where, for the specific measurement purposes, the value 
provided by someone or something else can be trusted. 

For field measurements, this point of trust may be the certificate provided by a calibration 
and testing laboratory (especially if that certificate is authorised by an accreditation body). In 
a calibration laboratory this may be the certificate provided by the national measurement 
institute. In a national measurement institute this may be the primary SI instrument (for 
radiometry most often a cryogenic radiometer). Such a reference provides the beginning of 
the hierarchical calibration chain and the measured value for which the uncertainty budget is 
being produced provides the end of the chain. 

It is not necessary to make the chain go all the way back to fundamental constants, including 
the full traceability chain within, for example, an NMI. It is necessary to go back to the ‘point 
of trust’ – the point for which you have a calibration, with calibration certificate including a 
full uncertainty statement from an accredited laboratory. 

 

 

                                                 

19 The traceability may be a ‘chain’ if there is a single artefact that is calibrated in comparison to a reference artefact that was 
calibrated by a higher tier laboratory, etc. There may be a ‘tree’ if for example a quantity is calculated by combining 
electrical, optical, thermal and dimensional measurements – where traceability will be independently to SI for each of those 
parameters. 
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Questions to ask yourself: 

What is the traceability chain for my measurements? 

What references do I use? 

How were the references set up for the calibration? 

Am I relying on other secondary measurements (temperature, time, distance)? How are they 
calibrated? 

Are there intermediate steps – if I’m comparing two sources (lamps), what detector am I 
using? If I’m comparing two detectors, what source am I using? 

How far back do I need to go before I read the answer off a certificate? 

4.3 Step 2: Writing down the calculation equations 

Each arrow in the traceability chain is likely to be calculated by combining different values in 
a calculation equation.  

For example, consider the radiance of a diffuser tile illuminated by an FEL lamp. The radiance 
of the diffuser tile, viewed at an angle of 45° and for normal incidence illumination is given 
by: 

 FEL 0 :45
s

E
L




   (4.1) 

where, sL  is the source radiance, FELE is the lamp irradiance and 0 :45   is the diffuser 

reflectance factor. Equation (3.5) forms the basis of the measurement equation and is the 
calculation equation; i.e. the equation used to calculate the ‘answer’ in the laboratory.  

The calculation equation will be expanded to form a full measurement equation in Step 4. 
But at this stage the aim is to write down the calculation that is performed at each step 
explicitly.  

Questions to ask yourself: 

What is the equation used to calculate each box in my traceability chain? 

Is it a single step or multiple step process? 

Do I rely on other information (e.g. a distance measurement) that is not included in my 
traceability chain? 

At this stage – do I need to go back to step 1 and refine my traceability chain? 
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4.4 Step 3: Considering the sources of uncertainty 

The aim here is to consider, for each step of the traceability chain, what the sources of 
uncertainties are. In the final uncertainty budget, these will provide the rows of the 
uncertainty budget.  

Often a good starting point is to brainstorm – whether that is in a list, or using a more 
graphical approach (e.g. Figure 5). It is helpful to use other people’s examples as a check-list. 

 

Figure 5 Brainstorm mindmap of uncertainties associated with a spectral irradiance measurement of a test 
lamp in comparison with a reference lamp 

Another method that can be used is to consider the calculation equation for each step of the 
traceability chain, as determined in Step 2. Each term in that equation will have associated 
uncertainties and those should be listed. For example, for the calculation equation (4.1), we 
immediately determine the first sources of uncertainty: 

 The irradiance of the FEL lamp (as measured by, e.g. an NMI) 
 The reflectance factor of the diffuser (as measured, by e.g. an NMI) 

Finally, it is important to understand the underlying (often unstated) assumptions behind the 
calibration process. Many calibration processes involve a comparison, e.g. that the irradiance 
of the test lamp is compared with the irradiance of the reference lamp using a transfer 
spectrometer. The assumption here is that the transfer spectrometer behaves in exactly the 
same way to the reference lamp and test lamp. However, that may not be the case. For 
example: 
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 The spectrometer may be non-linear and the test lamp might be much higher or 
lower radiance than the reference lamp. 

 The spectrometer may be temperature sensitive and one lamp may heat the room up 
more than the other, or the second lamp measurement may take place a day after the 
first lamp measurement and the room has changed temperature. 

 The spectrometer may have changed in being moved from one source to another. 
 The spectrometer may be sensitive to stray light from other wavelengths. The 

reference lamp (say an FEL) may emit more light at those wavelengths than the test 
lamp (say an LED-based source). 

 The spectrometer’s input optics has a diffuser on it. The diffuser is not perfectly 
Lambertian and the test lamp may illuminate it at a greater range of angles than the 
reference lamp does. 

 The two sources may have different ultraviolet outputs and the diffuser may 
fluoresce. 

All these examples are where the comparison makes underlying assumptions of equivalence, 
whereas the actual measurement system may not be equivalent for the two sources. At this 
stage, these effects should be listed. 

Questions to ask yourself (for each step of my traceability chain): 

How did I get this result? What previous information did I use? What else might have 
affected the result? 

What is the equation I’m using to calculate the answer? Where do the values for each of the 
variables come from? What uncertainty is associated with each of those? 

What hidden assumptions are there? 

Am I doing a comparison? What am I assuming is the same for that comparison? Am I 
comparing apples and oranges?  

4.5 Steps 1 to 3 for a space-borne sensor 

There is nothing fundamentally different about a sensor that is in orbit to an instrument that 
is calibrated for measurements on an aircraft, in a field or a laboratory. The steps described 
here will apply in all situations, but may need some translation and interpretation specific to 
the application. Probably the most significant barrier to applying this to satellite sensors is 
the complexity of the algorithms and the scale of the task. It is therefore important to be 
able to determine a simplified version of the uncertainty problem and then add in 
complexity in stages. 

The first three steps are about understanding the problem and writing down what is known 
about the measurement system. There will still be a traceability chain, albeit perhaps one 
that is ‘broken’ by the launch process (see e.g. Section 8.5.2). It can help to separate the 
analysis into two independent sections – the first that describes the traceability of the pre-
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launch calibration and characterisation of the instruments and the second that describes the 
process of post-launch cal/val using on-board and vicarious calibration processes.  

In any calibration chain, even those of well-understood routine calibrations in an NMI 
laboratory, there will be aspects that are not fully understood. There are always uncertainty 
components that are estimated, or even guessed, based on experience, historical records or 
models of ‘worst case scenarios’. In a space-borne instrument, there will usually be more 
such ‘guesses’ – things that cannot be known (e.g. how has the spectral response function of 
the instrument changed in orbit?). However, post-launch cal/val processes can put upper 
limits on probable changes and associate uncertainties with them.  

The NMIs are well aware that there can always be systematic effects not fully understood – 
the “unknown unknowns” in any uncertainty budget. The NMI community attempts to 
determine whether such factors are present through formal blind international 
comparisons20. Similarly sensor-to-sensor and sensor-to-ground comparisons can give an 
estimate of the post-launch changes in the instruments on satellites as well as indicating any 
problems with the calibration (unknown unknowns). The QA4EO Guideline 4 advises on how 
to run similar comparisons for EO measurements – whether between sensors or between 
ground measurement techniques. 

The first step in uncertainty analysis for a satellite sensor involves an explicit description of 
the in-orbit traceability chain – including both the prelaunch calibration processes and the 
post-launch cal/val. The second step is to write down the calculation equations – both for the 
calibration processes and for the data processing in orbit, e.g. how the digital numbers 
obtained in orbit are turned into the Level 1 product (e.g. top-of-atmosphere reflectance). 
This is usually done in the Algorithm Theoretical Basis Document and/or the Detailed 
Processing Model and should include the corrections applied to the data, including pre-
launch and post-launch calibration coefficients. The third step is to write down the sources of 
uncertainty. This will include: 

 Calibration processes in the pre-flight calibration including uncertainties associated 
with references, with the process of calibration and the ‘hidden assumptions’ in the 
calibration (e.g. similar to those described in Section 4.4).  

 Calibration processes in the post-launch calibration/validation including uncertainties 
associated with references, the process of calibration and the ‘hidden assumptions’ in 
the calibration 

 In-orbit degradation of all instruments and artefacts, especially those that cannot be 
checked by the inflight calibration/validation 

 In-orbit degradation of inflight references 

                                                 

20 As part of the Mutual Recognition Arrangement which ensures that measurements made traceably to SI at one NMI can be 
considered legally traceable to another NMI within a ‘degree of equivalence’ there are regular comparisons between NMIs of 
all significant quantities. The comparisons are organised in a formal manner to ensure rigorous impartiality and the results 
are published on the Key Comparison Database (http://kcdb.bipm.org/).  
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A really helpful example is given for the MERIS calibration. The document “MERIS Instrument 
Calibration” is freely downloadable [4]. This report reviews the MERIS calibration process. It 
distinguishes pre-flight and on-orbit calibration in two separate sections.  

The first two sections of the MERIS calibration report are a “review of the instrument” and 
“the calibration principle”. The report does not explicitly provide a traceability chain. 
However it is possible to work it out from the provided information. Figure 12 provides the 
“calibration processing chain” and effectively is doing Step 2 of this uncertainty process – the 
“calibration processing chain” is the calculation equation. The brainstorm of sources of 
uncertainty of step 3 is also straightforward from the titles of the report.  

4.6 Step 4: Creating the measurement equations 

The measurement equation is an extended version of the calculation equation that also 
explicitly describes the other sources of uncertainty. It is usually sensible to create a 
measurement equation for the each subsection of the traceability chain, although in some 
relatively simple cases, a full measurement equation for the whole process can be made. This 
will build on the ‘hidden assumptions’ described in Step 3. For example, for the calculation 
equation (4.1) we have the following hidden assumptions: 

 The lamp-diffuser distance, used  is the same as the distance at which the lamp 

irradiance was calibrated, cald . Assuming the FEL lamp obeys the inverse square law21 

[5], then there needs to be an additional term 2 2
cal used d in Equation (3.5). 

 The lamp has been stable since calibration and FELE  is an accurate representation of 

the lamp irradiance at the time of the new measurements. There will actually be some 
variations due to: 

o Lamp stability (short term) – i.e. random fluctuations 
o Lamp stability (long term) – i.e. changes since calibration, drift 
o Lamp alignment (rotation, positioning) 
o Lamp current control: accuracy and stability 

 The diffuser has been stable since calibration, and hence 0 :45    is an accurate 

representation of the diffuser radiance factor at the time of the measurements. There 
may be some variations due to: 

o Diffuser stability (e.g. due to getting dirty or absorbing hydrocarbons) 
 Accuracy of angles set during calibration and use (is it really a 0°/45° geometry?) 
 The irradiance patch is uniform over the field-of-view of the instrument viewing the 

diffuser panel22.  

                                                 

21 Which it doesn’t! Actually FEL lamps, for distances greater than 500 mm, obey the ‘modified inverse square law’ and the 

term should be    2 2

cal offset use offsetd d d d   , where the offset distance is the distance from the filament to the 

reference plane and is determined by testing the inverse square law behaviour using a detector with a clearly defined 
reference plane. For shorter distances a further term is required to account for the physical dimension of the filament. Note 
also that for a bulk diffuser, such as SpectralonTM, there is an additional ‘diffuser offset distance’. 
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These concepts should, somehow be included in the measurement equation (which is an 
expanded version of the calculation equation). The distance term can be directly included 
into the equation, expanding it to: 

 
2

FEL 0 :45 cal
s 2

use

E d
L

d




   . (4.2) 

Note that if the calibration and use distances are nominally the same, the final term has an 
expected value of unity (one), but there will nevertheless be an uncertainty associated with 
taking this value of unity that must be considered. 

All the terms associated with the assumptions made can be included in the equation. For 
example, we may write 

 
2

FEL 0 :45 cal
s lampstab align current diffstab unif2

use

E d
L K K K K K

d




   . (4.3) 

Here the K  terms relate to the different effects. These terms all have an expected (nominal) 
value 1iK  . In other words, we are assuming that the value of each is unity23. However, 

there is an uncertainty associated with that assumption. 

Equation (4.3) forms the full measurement equation. Note that there are still uncertainties 
associated with the main terms FEL 0 :45,E     and there are additional uncertainties associated 

with the assumptions in the iK  terms. 

If there is correlation, then the measurement equation also provides an opportunity to 
describe the correlation, often in such a way that the ‘writes-out’ the correlation and means 
that the remaining terms have no associated correlation (they are independent of each 
other), as we saw in Section 3.4. 

Questions to ask yourself: 

Have I included each source of uncertainty in my measurement equation? 

Are these additive or multiplicative? 

 

                                                                                                                                                        

22 Note that if the diffuser is only 500 mm from the lamp, the corners of a 300 mm by 300 mm panel are 543 mm from the 
centre of the filament – and from the inverse square law would be expected to be 15 % lower radiance than the centre of the 
panel. In practice the radiance non-uniformity can be better or worse than this, depending on the filament dimension. 
23 In practice, some of these may be corrections. We may make a correction for the fact that we know the lamp current was 
set ‘wrongly’ or that we know the uniformity is not perfect. In this case the terms have an assigned value (not unity), and an 

uncertainty associated with the correction. It can be helpful to use a different symbol, say unifC  for corrections. 
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4.7 Step 5: Determining the sensitivity coefficients 

The sensitivity coefficient is the sensitivity of the calculated result to an error in each of the 
parameters of the measurement equation in turn. As described in Section 3.1, sensitivity 
coefficients can be determined: 

 Mathematically, by differentiating the measurement equation 
 Numerically, by modelling the effect of a change in that quantity using a system 

model 
 Experimentally, by varying that parameter in the laboratory 

All three methods are typically used in the development of any uncertainty budget. The 
method chosen depends on what information is available: if a model exists as software, it is 
relatively straightforward to modify that to include a numerical estimate of sensitivity 
coefficients. If the measurement equation has explicit relationships, then often it is most 
straightforward to differentiate it directly. If the measurement equation cannot be written 
down explicitly, then the sensitivity coefficients should be determined experimentally. 

Questions to ask yourself: 

Can I differentiate the measurement equation?  

Can I determine the sensitivity coefficient numerically / through modelling? 

What experimental tests can I do to determine the sensitivity coefficient? 

4.8 Step 6: Assigning uncertainties 

The final aim of this section is to obtain an uncertainty budget table that lists the uncertainty 
components, their associated uncertainties and the uncertainty associated with the final 
measured value due to each of these effects in turn. Separately it is important to state clearly 
the correlations (or lack of correlation). For the example of the lamp-diffuser radiance, an 
example table is given as Table 2. 

Table 2 Example uncertainty budget for a lamp-diffuser combination 

Uncertainty component 
Associated uncertainty (relative) Uncertainty 

associated with 
radiance due to this absolute relative 

Sensitivity 
coefficient 

Lamp irradiance (calibration) 
 

0.30% 1 0.30% 

Diffuser radiance factor (calibration) 
 

0.30% 1 0.30% 

Lamp-diffuser distance (same as calibration 
distance for lamp)? 

1 mm in 
500 mm 

0.20% 2 0.40% 

Stability of lamp (short term) 
 

0.10% 1 0.10% 

Stability of lamp (drift/ageing) 
 

0.10% 1 0.10% 

Alignment of lamp 
   

0.05% 

Current stability of lamp (at 350 nm) 3 mA 
  

0.29% 

Diffuser stability (ageing) 
 

0.10% 1 0.10% 

Uniformity of diffuser 
 

0.50% 1 0.50% 
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Note here: 

 For some effects (irradiance, reflectance factor, stability, uniformity), the estimated 
uncertainty associated with the parameter is a relative uncertainty in %, the sensitivity 
coefficient is determined mathematically (Equation (3.7) for example) and is the 
relative sensitivity coefficient. The final column is determined by multiplying the 
uncertainty associated with the component with the sensitivity coefficient. 
 

 For the distance the same applies, here the relative sensitivity coefficient is 
determined mathematically (Equation (3.11), note the negative sign is ignored as this 
will be squared24). This requires the relative uncertainty associated with distance, 
which is calculated from the absolute uncertainty associated with distance. 

 
 The alignment sensitivity for the lamp was determined experimentally. Therefore 

there is nothing in the first three columns as it was calculated directly from the 
standard deviation of multiple measurements with the lamp realigned between 
measurements. With experimental determinations, the sensitivity coefficient and the 
assigned uncertainty are often calibrated simultaneously.  

 
 The current sensitivity was estimated to be 3 mA. This was determined to affect the 

lamp irradiance at 350 nm by 0.29 %. In this case this was evaluated through 
modelling and the result provided straight into the final column. Alternatively, it 
could have been done experimentally by changing the current by ten times more (see 
page 14). In that case a sensitivity coefficient would have been calculated from the 
measured values for ten times the change and then divided by ten. 

It is not therefore necessary to fill in every square in this table. What matters is the final 
column. This section has described different methods for estimating that final column. 

 

Questions to ask yourself (for each source of uncertainty): 

How can I assess how large the uncertainty is?  

Is it small (< 1/5th) compared with the largest uncertainty? 

What is the probability distribution function? 

Is it correlated with other uncertainty contributions? 

 

                                                 

24 Keep the minus signs in if there is any correlation between this and another parameter, as the second half of the law of 
propagation of uncertainties does not square the sensitivity coefficients. 
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Gaussian and other probability distribution functions 

Note that here we have assumed that the uncertainties associated with each of the 
parameters are considered to describe Gaussian (normal) probability distribution functions. 
Thus the parameter is more likely to be close to the expected value than further from it.  

There are times when a rectangular probability distribution function is more appropriate. 
This means that we know that the value will definitely lie between two limits, with an equal 
probability of being anywhere between those limits, and no probability of being outside this. 
This could be the case, for example, where the room temperature is controlled between 
19.5 °C and 20.5 °C by the air-conditioning system and will not be outside this. It is also the 
case for ‘rounding errors’ on digital displays. If a display provides the value 3.84 it is equally 
likely that the value falls anywhere in the range between 3.835 and 3.845.  

Rectangular probability distribution functions can be represented in uncertainty tables as 

standard (Gaussian) uncertainties, by dividing the half range by 3  . Sometimes uncertainty 

budgets will have an additional column labelled “divisor” that will include these 3  values 

for rectangular distributions. 

Similarly, if a value is read off a certificate, then the certificate will probably provide 
expanded uncertainties (say at the 95 % confidence level) and may include a statement 
saying, “for 2k  ”, for example. A standard uncertainty (as needed for the uncertainty 
budget) will be obtained by dividing the expanded uncertainty by the value for k  . 

4.9 Step 7: Combining and propagating uncertainties 

Having obtained the uncertainty associated with the measured value due to each uncertainty 
parameter in turn it is necessary first to combine the uncertainties to obtain the uncertainty 
associated with the measured value due to all these uncertainty components, and then to 
expand that calculated standard uncertainty to an appropriate confidence level. These steps 
are discussed here. 

Uncertainties are combined using the Law of Propagation of Uncertainties given in the GUM, 
and given above as Equation (2.1). If the different parameters given in the uncertainty budget 
table are uncorrelated, then the first half of the equation applies and if the final column in 
the uncertainty budget provides i ic u , the combined standard uncertainty is obtained by 

“adding the column in quadrature”, i.e. taking the square root of the sum of the squares25, 
which for the table above is 0.84 %. If there are correlations between the input parameters, 
then the second half of the Law of Propagation of Uncertainties is required.  

Questions to ask yourself (for each source of uncertainty): 

Will the smallest uncertainties have negligible impact?  

                                                 

25 In Excel “=sqrt(sumsq(F10:F18))” for example 
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4.10 Step 8: Expanded uncertainties 

The central limit theorem states that the arithmetic mean of a sufficiently large number of 
independent random variables, each with a well-defined expected value and well-defined 
variance, will be approximately normally (Gaussian) distributed26. 

What this means for uncertainty analysis is that if there is a reasonably large number of input 
parameters, with similar enough (well-defined) uncertainties, then the probability 
distribution of the output parameter will be approximately Gaussian, no matter what are the 
probability distributions of the input parameters. This means that it is straightforward to 
expand uncertainties assuming that the standard uncertainty obtained by combination 
relates to a Gaussian distribution. 

For a Gaussian distribution, the standard uncertainty represents a coverage probability of 
approximately 66 %, therefore the true value will be within the standard uncertainty of the 
measured value approximately 66 % of the time. It is more common to provide 
(approximately) 95 % confidence intervals. For a Gaussian distribution, these are obtained by 
multiplying the standard uncertainty by the coverage factor 2k  . 

If the distribution is not Gaussian, then a different coverage factor is needed. A different 
coverage factor is also needed if the standard uncertainties in the uncertainty budget table 
are not sufficiently well known. Section 3.3.2 described increasing the estimate of uncertainty 
obtained from the standard deviation of a number of repeat readings according to Equation 
(3.26) to account for the fact that the standard deviation of a small number of readings is 
unreliable. If this is done, then it is reasonable to assume that 2k  . 

Alternatively, the GUM provides the Welch-Satterthwaite Equation, which calculates the 
effective degrees of freedom of the combined standard uncertainty (i.e. a weighted answer 
to the question: “how many independent measurements are involved in estimating the 
uncertainty?”). 

The Welch-Satterthwaite equation calculates the effective degrees of freedom using the 
following expression 

 
 
 

4
c

eff 4

1

N
i

i i

u y

u y







. (4.4) 

Here,  cu y is the combined standard uncertainty associated with the value y  and 

   i i iu y c u x is the uncertainty associated with y  due to one of its contributing effects, 

ix , i.e. the standard uncertainty associated with ix  multiplied by the magnitude of the 

                                                 

26 Provided the distribution of no one random variable dominates 
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sensitivity coefficient. i is the number of degrees of freedom associated with the estimate of 

 iu y . 

For Type A determinations of uncertainty, i.e. where the uncertainty is determined by taking 
the standard deviation of multiple measurements, the degrees of freedom is the number of 
measurements minus one27: 

 1N     (4.5) 

Note that if you had a ‘commissioning phase’ (see Section 3.3.2) where you made large 
numbers of measurements to estimate the uncertainty, then the N  to use here is the 
number of measurements combined in that commissioning phase to estimate the standard 
deviation and hence uncertainty. If for the routine measurements only a small number of 
measurements are averaged, then the degrees of freedom are still calculated from the 
original number of commissioning measurements, as this is about how good the uncertainty 
estimate is. Note however, that this uncertainty associated with a single reading will only be 
reduced in averaging by the square root of the number of readings actually averaged today. 

For Type B determinations of uncertainty, i.e. where the uncertainty is determined ‘by other 
means’, for example prior knowledge, certificates etc, the number of degrees of freedom is 
harder to define. There are two ways of doing so: 

1. By assuming that the Type B uncertainty is known “perfectly” and the “degree of 
freedom is infinite”. This comes from the attitude that you’re “given” a Type B 
uncertainty. In this example the bottom line of the Welch-Satterthwaite equation 
ends up with a term  4 0iu y   . 

2. We estimate the “uncertainty in the uncertainty”. This is, of course, more of an art 
than a science, but if we have a feel for an uncertainty range, then the GUM provides 
an equation  

 
 
  

2

1

2

u x

u u x


 
  

  
  (4.6) 

So, for example, if we have a Type B uncertainty that is 3 %, but our experience and 
confidence considers that what we mean by this is that the uncertainty lies in the 
range from 2 % to 4 %, we may say the “uncertainty in the uncertainty” is 1 % 
absolute (or the uncertainty is reliable to about 0.33). And  

 

2
1 3%

4.5
2 1%

     
  (4.7) 

                                                 

27 The minus one comes from the fact that if a mean is calculated from N  measurements, then the mean and 1N   
measurements fully describe the problem: the final measurement can be calculated from the mean and the others. i.e. the 
mean ‘uses up’ one of the degrees of freedom. 
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The final step involved in evaluating an expanded uncertainty is to determine the value of k , 
i.e. the value to multiply a standard uncertainty by in order to turn it into an expanded 
uncertainty with a 95 % confidence interval. This is obtained from the t-distribution, and for a 
95 % confidence interval the values are given in Table 3. More values are given in the GUM. 

Table 3 Degrees of freedom and value of the coverage factor for a 95 % confidence interval 

Degrees of freedom 
from the Welch-

Sattherwaite formula 

Value of k  required for 
a 95 % confidence 

interval 
2 4.3 
3 3.18 
4 2.78 
5 2.57 
10 2.23 
15 2.13 
20 2.09 
40 2.02 
100 1.984 
∞ 1.960 

(For infinite degrees of freedom, the coverage interval for 2k   is 95.45 %). 

4.11 Experimental techniques for testing and validating an uncertainty 
budget 

We have considered above the various steps involved in calculating the uncertainty 
associated with any given measurement result. In summary, this involves thinking about: 

 What affects the measurement result? 
 How big is the uncertainty associated with each of these effects? 
 How sensitive is the result to each of these effects (i.e. what is the ‘sensitivity 

coefficient’)? 
 Are the effects correlated? 

However no matter how thorough you are with this analysis, it is always possible that some 
important contribution has been missed, or that one of the contributions considered has 
been underestimated (or, indeed, overestimated). So the question then becomes “How do I 
know I have calculated the ‘right’ uncertainty”? 

Fortunately there are a number of approaches that can be used to test or validate an 
uncertainty evaluation, as described below. These are all based on comparisons between 
results obtained in different ways, and generally involve the use of the so called NE -ratio, 

defined as   
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



  (4.8) 

where iE  is the measurement result and iU  is the associated expanded uncertainty. A value 

of N 1.0E   indicates that the two results agree with each other within the limits expected 

based on their associated uncertainties. 

Simply repeating the measurement in exactly the same way will provide information on the 
impact of randomly varying variables, such as detector noise, which can be useful in terms of 
validating the ‘Type A’ contributions in the uncertainty budget. However repeat 
measurements, if carried out appropriately, can also yield information regarding ‘Type B’ 
(systematic) contributions. The approaches described below are all useful, but in each case it 
is important to remember that many of the systematic uncertainties included in the 
measurement uncertainty budget will be common to both sets of results involved in the 
comparison; these should be counted only once, or even removed completely, when 
calculating the NE  ratio. 

4.11.1 Use a different reference  

The use of two or more different references is particularly useful for confirming that neither 
one has changed its calibration value (e.g. due to ageing effects, damage due to misuse or 
during transportation). Many laboratories routinely use at least two references for all 
measurements, while others use one on a routine basis with a second included on an 
occasional basis as a check on the performance of the first. 

4.11.2  Use different instruments.  

Similarly to using a different reference, repeating the measurements in exactly the same way 
but using a different instrument (or instruments) can be used to confirm the performance of 
these instruments is consistent with the allowance made in the uncertainty budget. For 
example, if a DVM is used to monitor the voltage drop across a standard resistor in order to 
set a specified lamp current, a comparison with the results obtained using a different DVM 
will give useful confirmation of the associated uncertainty.  

4.11.3 Ask someone else to do the measurement.  

This is particularly useful for testing / validating the uncertainties associated with factors that 
depend on human judgements, such as aligning a lamp. Often the uncertainties associated 
with such effects are assessed by a single operator setting what they consider to be a ‘worst 
acceptable alignment’, but this can be subject to unsuspected bias. Asking another operator 
to carry out the alignment may yield a different result and can be used to improve the 
estimated uncertainty allowance.   
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4.11.4 Change the order of the measurements  

This may appear trivial, but can yield valuable insights. For example, the environmental 
conditions in the laboratory may change during the day, and simply changing from making 
measurements in the morning to the afternoon may then give different results. Or there may 
be an unsuspected reflection from a baffle in a measurement set up that causes stray light to 
impinge on a detector placed at one position on a translation stage, but not at another; in 
this case, changing the positions of the detectors may result in different results being 
obtained. 

4.11.5 Use a different measurement method  

Often the same measurand can be determined several different ways and comparing the 
results obtained using each of these is an excellent way of testing and validating the 
associated uncertainty budgets. A common example is spectroradiometric measurements 
using either an array instrument or a scanning device. In this case the majority of the 
systematic uncertainties will be different for each approach, but nevertheless it is important 
to exclude those which are common when comparing the results. For example, if the same 
power supply, DVM and standard resistor are used for measurement of the same lamp using 
both methods, then the uncertainties associated with these should be excluded when 
calculating the NE  ratio. 

4.11.6 Compare with someone else  

This is often regarded as the ultimate test, and is why NMIs spend so much time and effort in 
carrying out international comparisons of key measurement quantities, such as spectral 
irradiance. Even if another laboratory uses a similar measurement approach, the actual 
equipment and references used, the precise method followed, and the scientists carrying out 
the measurements, will all be different. Comparing the results not only reveals the level of 
agreement between individual participants, but also provides direct validation of the claimed 
uncertainties; put simply, if results for individual participants do not agree with the mean 
result to within combined uncertainties, then that participant has underestimated their 
measurement uncertainty. When conducting comparisons between different laboratories, it 
is useful to compare not only the results and total uncertainties, but also the detailed 
uncertainty budgets; this can highlight, for example,  uncertainties that have been 
overlooked, or under or over-estimated, by individual participants. 

4.11.7 Use a different artefact  

This is an extremely valuable way of testing and validating an uncertainty budget, but is 
often overlooked; indeed it is often deliberately avoided, on the basis that using the ‘best’ 
artefact available will almost certainly lead to the ‘best uncertainty’. The danger with always 
using the same type of artefact (e.g. the same type of lamp or detector) is that an 
unsuspected systematic bias may always be included; in other words, the results may be 
highly consistent, but consistently incorrect! Using a different type of artefact can help 
quantify any ‘known unknowns’ or reveal ‘unknown unknowns’.  
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5 Case study: APEX imager calibration (simplified) 

5.1 The APEX imager calibration 

This case study describes a somewhat simplified version of the APEX imager calibration. Later 
sections consider some of the more involved aspects. It is strongly recommended that in 
producing an uncertainty budget, participants start with a simplified version of their own 
traceability and then add complexity as they become more familiar with the concepts. 
Although the details in this section apply to the airborne APEX instrument specifically, the 
concepts they introduce are more general than this and apply to all EO imagers. 

ESA’s Airborne Imaging Spectrometer APEX (Airborne Prism Experiment) was developed 
under the PRODEX (PROgramme de Développement d'EXpériences scientifiques) program by 
a Swiss-Belgian consortium and entered its operational phase at the end of 2010. It is an 
imaging spectrometer that is usually flown on a DLR aircraft to obtain high resolution images 
of the ground with typical pixel sizes ranging between 1.5 m to 2.5 m. APEX features up to 
532 spectral bands in full spectral mode (providing spectral information from 387 nm to 
2500 nm). It also has spectral programmability to achieve higher Signal-to-Noise-Ratios 
(SNR) by reducing the number of bands in a binned configuration. Data [6, 7] are acquired in 
1000 pixels across track with a FOV of 28°.    

 

 

 

Figure 6 APEX imager on board aircraft and captured hyperspectral image28 

                                                 

28 The data cube shown here is available for free download from the APEX web site (www.apex-esa.org) as APEX Open 
Science Dataset. 
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The APEX calibration is carried out at the CHB (Calibration Home Base) situated at DLR 
Oberpfaffenhofen [8]. The standard APEX calibration is carried out in an operational manner 
at least once a year, usually at the beginning of the flight season. The calibration comprises 
measurements on an optical bench for the geometric and spectral calibration, using a 
collimator-slit setup and a monochromator respectively, and measurements using a small 
and big integrating sphere for absolute radiometric calibration and flat-fielding respectively. 

 

Figure 7 Calibration Home Base at DLR 

A full sensor calibration at the CHB can be achieved within 3-4 days, including sensor 
installation and alignment on the calibration bench. Raw calibration data are stored in the 
APEX Calibration Information System (CAL IS) [9] and processed to generate calibration 
cubes, holding calibration coefficient on a pixel per pixel basis (Figure 8). 

APEX imagery is calibrated to radiance in the APEX Processing and Archiving Facility 
(PAF)[10], applying the calibration coefficients produced by the CAL IS to the image cubes. 
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Figure 8: APEX Data Acquisition to Product Chain 

5.2 Step 1: Describing the traceability chain 

The APEX instrument is calibrated, at a few radiance levels, using a small integrating sphere 
source with neutral density filters placed in front of the source. By making the calibration for 
different radiance levels, the linearity and any bias offset for the instrument can also be 
determined. 

The integrating sphere source is too large to be easily calibrated at an NMI. So instead, a 
hand-held spectrometer is used to transfer a calibration from a source engineered by DLR 
and calibrated by PTB (the RASTA source) to the integrating sphere source. The neutral 
density filters were calibrated at NPL directly. Therefore the traceability chain, simplified, is 
shown in Figure 9. 
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Figure 9 Traceability chain (simplified) for the APEX calibration 

In the blue section on the left of Figure 9, the calibration is transferred from the RASTA 
source, to a portable spectrometer and then to the integrating sphere used for the APEX 
calibration.  The RASTA source [11] consists of a white diffuser tile illuminated by an FEL 
lamp at normal incidence and viewed at 45°. The source also includes appropriate baffling to 
reduce and control stray light and several filter radiometers that monitor the short and long-
term stability of the RASTA source. The source was calibrated at an NMI, in this case PTB, and 
that calibration provides the traceability to SI.  

 

Figure 10 From [11]: Mechanical set-up of RASTA (left). RASTA after its alignment for calibration at PTB 
(right). The filter radiometers are shown in red in the mechanical set-up diagram. The lamp is in the 
octagonal housing and the diffuser panel is mounted on the plate on the left of the diagram and picture. 
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The spectrometer used is the SVC 1024 spectrometer29. This is first calibrated radiometrically 
against the RASTA and then used to calibrate the integrating sphere. The integrating sphere 
[8] is 500 mm in diameter, with a port of 40 mm × 200 mm. The sphere is operated so that 
the exit port is at the top of the sphere which allows APEX to be calibrated in its flight 
orientation (Figure 11). 

 

Figure 11 APEX mounted above the integrating sphere used for its calibration 

In order to perform the APEX calibration at several radiance levels, neutral density filters are 
used to reduce the output of the sphere. These neutral density filters were directly calibrated 
for transmittance at an NMI, in this case, NPL, and therefore have straightforward traceability 
to SI. 

The purple rectangle in Figure 9 is where the computed radiance for the sphere-filter 
combination is calculated. This is a straightforward multiplication of the sphere radiance and 
the filter transmittance. 

The green section transfers the calibration to the APEX instrument. First the radiometric gain 
of the APEX instrument (i.e. the conversion factor from its output digital numbers to 
radiance) is calculated from the APEX measurement of the sphere-filter source, and then the 
measured digital numbers of a particular scene are converted to radiance using the 
instrument gain. 

                                                 

29 http://www.spectravista.com/HR1024i.html 
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5.3 Step 2: Writing down the calculation equations 

5.3.1 For the calibration of the sphere 

 
 
        Figure 12 

 
The traceability chain for this section is shown to the left.  
 
In the first step PTB provides a calibration of the RASTA source 
(comprising a lamp and diffuser and appropriate baffling). This 
creates an SI-traceable calibration of the radiance of the RASTA 
source, RASTAL  . PTB provides a calibration certificate for the radiance, 

with an associated relative uncertainty, expressed as an expanded 
(95 % confidence, k = 2) uncertainty in per cent. 
 
In the second step the SVC transfer spectrometer views the RASTA 
source and obtains a spectrum (in digital numbers [DN] as a function 
of wavelength). This measurement is performed as the average of 
several light readings minus the average of several dark readings 
(with the entrance port of the spectrometer closed). From this, the 
gain of the SVC (units: [W m-2 sr-1 nm-1 DN-1]) is determined. 
 
In the third step, the SVC transfer spectrometer views the APEX 
calibration sphere source. The radiance of the APEX sphere source is 
calculated from the SVC gain and the measured DN for the sphere 
source, again an average of several light readings minus an average 
of several dark readings. From this the spectral radiance of the APEX 
calibration sphere source is determined. 

Both parts of this process can be considered comparison calibrations. In the second step of  

        Figure 12, the SVC gain30 is calculated from the calculation equation 

 RASTA
SVC

RASTA

L
G

DN
   , (5.1) 

where, RASTAL  is the PTB-calibrated radiance of the RASTA source and RASTADN  is the 

measured digital numbers on the SVC spectrometer when viewing the RASTA source. Note 
that all three quantities in Equation (5.1) are spectral quantities and are functions of 
wavelength. The equation is valid for a specified wavelength, but the wavelength 
dependence is not specifically written here to simplify the presentation. 

                                                 

30 An alternative would be to calculate the spectral radiance responsivity of the SVC instrument. The spectral radiance 

responsivity, with units [DN / (W m-2 sr-1 nm-1)], is the inverse of the gain, 
1

SVC SVCR G   and is the response of the 

instrument per unit radiance. 
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The third step is similar. The radiance of the sphere is calibrated using the SVC spectrometer 
and is calculated using the calculation equation 

 sphere sphere SVCL DN G    , (5.2) 

where, sphereL   is the sphere radiance, sphereDN is the measured digital numbers when the SVC 

views the sphere and SVCG   is the SVC gain, calculated from (5.1). Again, all three quantities 

are spectral quantities, and this equation is calculated at each wavelength in turn. 

5.3.2 For the calibration of the APEX imager 

 

The radiance of the sphere-filter combination is calculated as 

 sph-filt sphere filterL L     (5.3) 

where filter  is the transmittance of the filter, and sphereL  is calculated in Equation (5.2). Again, 

these are spectral quantities and this is calculated for each wavelength in turn. 

The signal on the APEX imager for a particular wavelength, APEX,calDN , in digital numbers, 

when viewing the sphere-filter combination is then used to calculate the APEX gain as 

 APEX sph-filt APEX,calG L DN   , (5.4) 

where  

 APEX,cal APEX,cal,light APEX,cal,darkDN DN DN    . (5.5) 

5.3.3 For the user of the APEX imager to measure scene radiance 

The radiance of an observed scene is then 

 scene APEX APEX,sceneL G DN   , (5.6) 

where 

 APEX,scene APEX,scene,light APEX,scene,darkDN DN DN    . (5.7) 

5.4 Step 3: Considering the sources of uncertainty 

Each stage of the transfer from the PTB radiance values to the observed scene radiance is 
some form of comparison calibration, and therefore there are uncertainties associated with 
both the explicit terms in the calculation equation, and the ‘hidden assumptions’ that 
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everything is equivalent on both halves of the comparison. For each calculation equation, we 
can prepare an uncertainty table. These are given below, 

5.4.1 For the calibration of the SVC spectrometer against the RASTA 

Calculation Equation (5.1) is a comparison between the values assigned to RASTA by PTB 
using their measurement instrument RASTA and the SVC’s measured values for the RASTA. It 
is important to review three sources of uncertainty: those due to RASTAL , those due to 

RASTADN  and those due to implied assumptions hidden within this comparison. 

Table 4 Uncertainties associated with Calculation Equation (5.1) and its hidden assumptions 

SVCGu   Uncertainty component Comments 

Uncertainties associated with RASTAL    

RASTA

RASTA

L

L

u  PTB calibration of RASTAL  
This will be read off the certificate. See the additional notes box 

on the next page. 

Uncertainties associated with RASTADN  

RASTA_

RASTA_

DN

DN

u




 Noise in light reading 
This will be obtained through ‘Type A’ methods (i.e. from a 

standard deviation – see Section 2.6.2.) 

RASTA_d

RASTA_d

DN

DN

u
 Noise in dark reading This will be obtained through ‘Type A’ methods  

Uncertainties associated with the comparison assumptions 

RASTA_age

RASTA_age

K

u
  

Ageing of RASTA since PTB calibration 

The RASTA source has inbuilt filter radiometers that monitor the 

source stability. The variation of these signals can be used to 

estimate this uncertainty component, and, if appropriate, apply a 

correction. 

 Stability of RASTA (short term) 
This will get included in the standard deviation of the light 

readings, and does not need ‘double counting’ here 

stray

stray

K

u
 External stray light influencing the SVC 

calibration 

This is light that contributes to the SVC signal and comes from 

outside its field-of-view. 

 Any environmental sensitivities of 

RASTA (temperature, pressure, 

humidity) 

These are assumed to be negligible (and therefore given an 

uncertainty of 0 %). RASTA consists of a tungsten lamp, which is 

insensitive to temperature, and a diffuser, which is also 

insensitive31 to minor temperature changes. 

unif

unif

K

u
 Uniformity of RASTA and any 

differences in the field-of-view for 

PTB’s calibration and the SVC view 

Understanding this requires a uniformity scan of the RASTA 

source, along with knowledge of the fields-of-view of the PTB 

calibration (from the measurement certificate) and the SVC 

source.  

                                                 

31 Spectralon does show a phase transition at ~19 °C, which affects its reflectance by approximately 0.1 %. However, the 
lamp is likely to heat the diffuser above this temperature, and this is minor compared to other uncertainty components. 
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5.4.2 For the calibration of the sphere with the SVC spectrometer 

Calculation Equation (5.2) is a comparison between the SVC’s measurement of RASTA and 
the SVC’s measurement of the sphere. It is important to review three sources of uncertainty: 
those due to sphereDN , those due to SVCG  and those due to the implied assumptions hidden 

within this comparison. 

Table 5 Uncertainties associated with Calculation Equation (5.2) and its hidden assumptions 

sphereLu   Uncertainty component Comments 

Uncertainties associated with SVCG    

SVC

SVC

G

G

u  As above This will come from the previous step. 

Uncertainties associated with sphereDN  

sphere_

sphere_

DN

DN

u




 Noise in light reading 
This will be obtained through ‘Type A’ methods (i.e. from a 

standard deviation). 

sphere_d

sphere_d

DN

DN

u
 Noise in dark reading 

This will be obtained through ‘Type A’ methods (i.e. from a 

standard deviation). 

Uncertainties associated with the comparison assumptions 

SVC_dft

SVC_dft

K

u
  Change of SVC between 

measurements  

We assume that the two measurements are reasonably close 

together in time. This means that there is no ‘ageing’ between one 

set of measurements and the next. There may be some sensitivity, 

however, to physically moving the SVC between the devices, for 

example. This ‘drift’ can be estimated by simulating the movement 

and remeasuring the same source with the SVC. This term should 

only be included if it is larger than the noise. 

 Stability of SVC (short term) 
This will get included in the standard deviation of the light 

readings, and does not need ‘double counting’ here 

stray

stray

K

u
 

External stray light influencing the SVC 

during calibration against RASTA and 

use with the sphere 

This is light that contributes to the SVC signal and comes from 

outside its field-of-view. What matters is the change in this 

between the calibration and use.  

stray_in

stray_in

K

u
 

Internal stray light influencing the SVC 

during calibration against RASTA and 

use with the sphere 

This is light that is scattered within the SVC onto the pixel for the 

wrong wavelength. This should be characterised for the SVC 

spectrometer and its effect will depend on the different spectral 

shape of the two source radiances – what matters is the difference 

between the RASTA and sphere source spectral radiances 

temp

temp

K

u
 Any environmental sensitivities of the 

SVC (temperature, pressure, humidity) 

If the external conditions vary from the calibration of the SVC vs 

the RASTA to its use to calibrate the sphere, then it is necessary to 

account for the sensitivity of the SVC to those changes. 

Spectrometers can be very temperature sensitive and local room 

temperatures can be higher near high power tungsten sources. 

lin

lin

K

u
  Linearity of SVC 

Spectrometers can be non-linear, either in terms of their 

integration time (does doubling the integration time double the 

signal), or in terms of their response to double the radiance. This 

will be a problem if the SVC is used on a different integration time 

for each source and/or if the sources are different radiance levels. 
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5.4.3 For the combined source radiance from the sphere and filters 

Calculation equation (5.3) assumes that the radiance of the source is a product of the 
radiance of the sphere and the transmittance of the filter. This also has some hidden 
assumptions. 

Table 6 Uncertainties associated with Calculation Equation (5.3) and its hidden assumptions 

sph-filtLu   Uncertainty component Comments 

Uncertainties associated with sphereL    

sphere

sphere

L

L

u  As above This will come from the previous step. 

Uncertainties associated with filter  

filter

filter

u


 Transmittance of the filter This will be obtained from NPL’s calibration certificate. 

Uncertainties associated with the hidden assumptions 

reflect

reflect

K

u
  Optical interreflections between the 

sphere and the filters  

When the filter is introduced in front of the sphere, it may be that 

some light from the sphere is reflected back into the sphere and this 

alters the radiance of the sphere. This coefficient is to account for 

any such interreflection effects. To estimate such effects, the 

distance between the sphere and filter can be varied, or the filter 

angled slightly so that reflections change direction (being aware 

that for many filters changing the angle will itself change the 

transmittance). These are experimental methods for estimating the 

sensitivity coefficient. 

fil_temp

fil_temp

K

u
 

Temperature sensitivity of the filter 

and changes when in front of the 

sphere 

Filters are usually temperature sensitive. The filter may be at a 

different temperature in front of the sphere than it was during its 

calibration at NPL. The temperature of the filter should be measured 

in front of the sphere, e.g. with a thermocouple. The filter could be 

recalibrated at different temperatures, or information obtained from 

the manufacturer on the temperature stability of the filter. 

sph-stab

sph-stab

K

u
 

The stability of the sphere between its 

calibration with the SVC and its use 

with the filter 

This can be estimated by the repeatability of multiple readings of 

the sphere alone over this time period 

filt_age

filt_age

K

u
 Ageing of the filters since calibration 

There is a time delay between the filter calibration and their use. In 

this time they are irradiated with UV radiation, but even storage can 

alter filters. The filters should be recalibrated at regular intervals to 

estimate the likely ageing since calibration. 

5.4.4 For the calibration of the APEX gain from the measurement of the sphere-filter 
source 

Calculation Equation (5.4) is a comparison between the SVC measurement of the sphere-
filter combination and the APEX instrument measuring the same source. There are, again, 
implied assumptions hidden within this comparison. 
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Table 7 Uncertainties associated with Calculation Equation (5.4) and its hidden assumptions 

APEXGu   Uncertainty component Comments 

Uncertainties associated with sph-filtL    

sph-filt

sph-filt

L

L

u  As above Calculated above. 

Uncertainties associated with APEX,calDN  

APEX,cal,light

APEX,cal,light

DN

DN

u  Noise in light reading 
This will be obtained through ‘Type A’ methods (i.e. from a standard 

deviation). 

APEX,cal,dark

APEX,cal,dark

DN

DN

u
 Noise in dark reading 

This will be obtained through ‘Type A’ methods (i.e. from a standard 

deviation). 

Uncertainties associated with the comparison assumptions 
 Stability of sphere-filter (short term) 

This will get included in the standard deviation of the light readings, 

and does not need ‘double counting’ here 

stray

stray

K

u
 External stray light influencing the 

APEX calibration 

This is from light that contributes to the APEX signal and comes from 

outside its field-of-view. 

humid

humid

K

u
 

Any environmental sensitivities of the 

sphere-filter (temperature, pressure, 

humidity) 

Temperature and pressure effects are assumed to be negligible (and 

therefore given an uncertainty of 0 %). The sphere has high power 

lamps in it and the temperature of the sphere will be ‘set’ by the 

sphere lamps, not the room conditions. There may be some 

sensitivity at certain wavelengths to humidity. A sphere has a very 

long effective path length, and therefore shows absorption at the 

water absorption lines. This will change with room humidity. 

unif

unif

K

u
 

Uniformity of the sphere-filter and any 

differences in the field-of-view for the 

SVC calibration and the APEX view 

Understanding this requires a uniformity scan of the source, along 

with knowledge of the fields-of-view of the SVC spectrometer and 

the APEX spectrometer.   

5.4.5 For the observed scene radiance 

The calculation equation (5.6) is a comparison between the calibration of APEX using the 
sphere and APEX’s measurement of the scene. There are several assumptions. 
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Table 8 Uncertainties associated with Calculation Equation (5.6) and its hidden assumptions 

sceneLu   Uncertainty component Comments 

Uncertainties associated with APEXG    

APEX

APEX

G

G

u  As above This will come from the previous step. 

Uncertainties associated with sphereDN  

APEX,scene,light

APEX,scene,light

DN

DN

u  Noise in light reading 
This will be obtained through ‘Type A’ methods (i.e. from a 

standard deviation ). 

APEX,scene,dark

APEX,scene,dark

DN

DN

u
 Noise in dark reading 

This will be obtained through ‘Type A’ methods (i.e. from a 

standard deviation). 

Uncertainties associated with the comparison assumptions 

APEX_dft

APEX_dft

K

u
  Change of APEX between 

measurements  

We assume that the two measurements are reasonably close 

together in time. This means that there is no ‘ageing’ between 

one set of measurements and the next. APEX may be sensitive, 

however, to being transported to the aircraft, mounted in the 

aircraft, etc. This change can be estimated by remeasuring the 

same source for a second calibration after the measurement 

campaign (but ensure that only effects bigger than noise are 

included to prevent double counting).  

 Stability of APEX (short term) 
This will get included in the standard deviation of the light 

readings, and does not need ‘double counting’ here 

stray

stray

K

u
 External stray light influencing APEX 

during its use with the sphere 

This is light that contributes to the APEX signal and comes from 

outside its field-of-view. This is specific to the situation in the 

aircraft, which is likely to be very different from in the laboratory 

calibration and it is the difference in stray light that is included 

here. 

stray_in

stray_in

K

u
 

Internal stray light influencing APEX 

during calibration and use. Also known 

as cross-talk 

This is light that that is scattered within the APEX onto the pixel 

for the wrong wavelength. This should be characterised for a 

spectrometer and will depend on the different spectral shape of 

the two source radiances. In this case there are both spatial and 

spectral dimensions to consider. Again, it is the change in internal 

stray light between the calibration source and the scene 

measurements that matters. 

temp

temp

K

u
 

Any environmental sensitivities of the 

APEX (temperature, pressure, 

humidity) 

The external conditions of the APEX are very different on the 

aircraft to in the laboratory. These changes should be simulated 

and the changes understood. Even if certain corrections are 

made, there will be a residual uncertainty.  

lin

lin

K

u
  Linearity of APEX 

Spectrometers can be non-linear, either in terms of their 

integration time (does doubling the integration time double the 

signal), or in terms of their response to double the radiance. This 

is tested by making the calibration with different filters in front of 

the sphere 
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5.5 Step 4: Creating the measurement equations 

The calculation equations need to be expanded into full measurement equations by 
including all the hidden assumption terms. Here we are treating all these terms as a 
multiplicative factors iK . All the iK  have an expected value of unity (one), with an 

uncertainty associated with that, described by iu  .  

Thus, calculation equation (5.1) becomes measurement equation  

 
RASTA RASTA_age stray unif

SVC
RASTA_ RASTA_d

L K K K
G

DN DN



. (5.8) 

Calculation equation (5.2) becomes measurement equation   

  sphere sphere_ sphere_d SVC SVC_dft stray stray_in temp linL DN DN G K K K K K   . (5.9) 

Calculation equation (5.3) becomes measurement equation 

      cal 0 sphere 0 filter 0 sph_stab sph_temp reflect filt_age filt_tempL L K K K K K     . (5.10) 

Calculation equation (5.4) becomes measurement equation  

 
sph-filt stray humid unif

APEX
APEX,cal,light APEX,cal,dark

L K K K
G

DN DN



 . (5.11) 

Calculation equation (5.6) becomes measurement equation 

 scene APEX APEX,scene APEX_dft stray stray_in temp linL G DN K K K K K  . (5.12) 

In all these measurement equations the terms are independent of each other, and are 
independent from line to line. This means that correlation does not need to be taken into 
account. 

5.6 Step 5: Determining the sensitivity coefficients 

For these straightforward measurement equations, the simplest way to determine the 
sensitivity coefficients is through differentiating. Consider first equation (5.8) for RASTAL  

 
RASTA_age stray unifSVC SVC

RASTA RASTA_ RASTA_d RASTA

K K KG G

L DN DN L


 

 
  (5.13) 

Therefore, the uncertainty associated with SVCG  due to RASTAL  is 

 
SVC RASTA RASTA

SVC
:

RASTA
G L L

G
u u

L
   (5.14) 
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And therefore,  

 SVC RASTA RASTA:

SVC RASTA

G L Lu u

G L
  ; (5.15) 

i.e. the relative uncertainty associated with the SVC gain due to the RASTA radiance is equal 
to the relative uncertainty associated with the RASTA radiance. Therefore the relative 
sensitivity coefficient is 1. 

The same relationship holds for all the parameters in the numerator of Equation (5.8). 

The denominator of Equation (5.8) is RASTA RASTA_ RASTA_dDN DN DN   ; i.e. a light signal 

minus a dark signal. This was discussed in detail in Section 3.3.1. For now, we consider this as 
a single quantity, RASTADN . Therefore 

 
 

RASTA RASTA_age stray unifSVC SVC
2

RASTA RASTARASTA

L K K KG G

DN DNDN

 
 


  (5.16) 

and the relative uncertainty associated with the gain, due to the relative uncertainty 
associated with the digital number signal is given by 

 SVC RASTA RASTA:DN

SVC RASTA

G DNu u

G DN


   (5.17) 

and the relative sensitivity coefficient is -1. 

5.7 Step 6: Assigning uncertainties 

The final aim of this section is to obtain an uncertainty budget table that lists the uncertainty 
components, their associated uncertainties and the uncertainty associated with the final 
measured value due to each of these effects in turn. 

Some methods for determining the uncertainty associated with the individual parameters 
were described in the tables above.  

The use of NMI calibration certificates 

A calibration certificate from an NMI generally provides uncertainties with a statement 
similar to: “The reported expanded uncertainty is based on a standard uncertainty multiplied 
by a coverage factor k = 2, providing a coverage probability of approximately 95 %.” The 
concept of expanded uncertainties is described in more detail in Section 4.10. When using 
the values, the uncertainties should be converted back to standard uncertainties. This means 
dividing by the provided value for k , which is generally, but not always 2. 

Each table in Section 5.4 can be expanded with extra columns for size of effect, (relative) 
sensitivity coefficient and “uncertainty associated with Y  due to this effect” (here Y  
represents the quantity calculated by each calculation equation in turn). For example, for the 
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second step in the chain, the determination of the gain of the SVC, this would be as in Table 
9. 

Table 9 Uncertainty budget table for the gain of the SVC 

SVCGu   Uncertainty component Size of effect 

(relative) 

sensitivity 

coefficient 

Uncertainty 

associated with SVC 

gain due to this effect 

Uncertainties associated with RASTAL    

RASTALu  PTB calibration of 
RASTAL  

 
1  

Uncertainties associated with RASTADN  

RASTA_DNu
  Noise in light reading  Combined, 

relative: 

 

-1 

 

RASTA_dDNu  Noise in dark reading   

Uncertainties associated with the comparison (apples and oranges) 

RASTA_ageu   Ageing of RASTA since PTB calibration  1  

 Stability of RASTA (short term) 0 1  

strayu  External stray light influencing the SVC 

calibration 
 1  

 Any environmental sensitivities of 

RASTA (temperature, pressure, 

humidity) 

0 1  

unifu  Uniformity of RASTA and any 

differences in the field-of-view for 

PTB’s calibration and the SVC view 

 1  

Similar tables can be prepared for the other parameters; however in all cases because of the 
simple measurement equations, the relative sensitivity coefficient is 1 (or occasionally -1). 
The parameters themselves are spectral quantities – they take a different value in each of the 
spectral bands. And therefore a more helpful way to present them is graphically, as in Figure 
13. 
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Figure 13 Uncertainty components for the APEX radiometric calibration presented graphically on a 
logarithmic scale. 

5.8 Step 7: Combining and propagating uncertainties 

Here the quantities are mutually independent (no correlation) and the uncertainty is 
propagated from one level to the next by being included as an input uncertainty at the next 
equation. The combined relative standard uncertainty associated with the scene radiance is 
therefore obtained by adding all the relative standard uncertainties in quadrature. This 
provides the green line in Figure 13.  

5.9 Step 8: Expanding uncertainties 

Almost always, to obtain the 95 % confidence interval, the standard uncertainty is multiplied 
by 2k   and this has been used here. 

5.10 This is just the start of the process 

The uncertainty analysis described here is a significant simplification of the actual calibration 
process for the APEX imager. It is, however, important to start with the simplification and 
then build in the complexity. Later sections in this report describe, for example, how the 
linearity measurements can be used to obtain a straight line calibration equation and how 
the spectral calibration of APEX is done and how it relates to the uncertainty analysis of this 
chapter. 

As complexity is introduced it can be considered a new ‘module’ that improves our 
measurement model and understanding of the uncertainty budget. Often initially such 
analysis is done to understand the uncertainty to assign to a component, later, as the 
analysis becomes more sophisticated, it can be used to calculate a correction and associated 
uncertainty. For example, the linearity measurements may initially be performed to estimate 
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the uncertainty associated with the assumption that linearity is insignificant (i.e. that linK  is 

Equation (5.12) takes the value unity). It may be that from those tests a more sophisticated 
linearity model is developed and that latter a linearity correction is applied, with an 
associated uncertainty.  

It is worth noting that because uncertainties are added in quadrature, an uncertainty that is 
1/5 the size of the largest uncertainty will have a relative weighting on the uncertainty 
budget of 1/25th. Generally there is a point where an uncertainty becomes ‘insignificant’. 
Usually at the end of Step 3 of the steps to an uncertainty budget it is possible to eliminate 
several terms as ‘insignificant’. At Step 6 others may be classified in this way.  
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6 Straight line calibration equations 

This chapter focuses mostly on a ‘straight line calibration equation’ – where the response of 
the instrument to different levels of input is fitted with a straight line. The final section, 
Section 6.6, considers interpolating experimental data by straight line interpolation.  

6.1 A straight line calibration equation 

In Equation (5.4) in Section 5.3.2, the gain of the APEX imager is determined using the 
integrating sphere and filter, and then used in Equation (5.6) to convert the APEX signal 

 DN  when viewing a scene into scene radiance, L  . This approach oversimplified the 

situation. In practice, the process is repeated with several different filters to obtain a 
response of APEX to different signal levels. The sphere-filter radiance (as a spectral quantity) 
and the signal response of APEX to those radiance levels are shown in Figure 14. 

 

Figure 14 Different radiance levels presented to APEX for different filters in front of the sphere (left) and 
the signal on APEX for each of these levels (right).  

From these results, at any particular wavelength, values are obtained for the signal at 
different radiance levels. Example results are shown in Figure 15. A straight line calibration 
function is fitted to these results and from this two parameters are obtained– the slope and 
the origin offset. The measured values at different radiance levels provide the calibration 
equation 

 APEX 0L G DN L     (6.1) 

where L  is the measured radiance in a particular band, 0L  is the offset radiance, APEXG  is 

the gain for that bandand DN  is the measured signal (in digital numbers) in that band. This 
can also be written as 

 0
APEX

L
DN DN

G
   , (6.2) 

where 0 0 APEXDN L G   is the signal offset. 
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Figure 15 Example fit for a particular band of the signal on APEX and the source radiance 

This approach is similar to that described in Section 5.3.2. There a single measured value is 
used to determine the gain and the offset is assumed to be zero (or that 0DN  is the dark 

reading that is subtracted from the measured signal). The straight line calibration equation 
expands this concept slightly by using data from other measured radiances and allowing for 
any offset that isn’t fully removed by the dark reading.  

When the instrument is then used to measure a scene, Equation (6.1) replaces (5.6). Straight 
line calibration equations are often used for calibrating instruments. If the instrument has a 
small non-linearity, then the uncertainty associated with the assumption of linearity can be 
predicted by the quality of such a fit. If the instrument is significantly non-linear, then higher 
order calibration equations may be used instead. Although the analysis below is specific for a 
straight line calibration equation, many of the concepts apply to higher order equations too.  

6.2 Uncertainty analysis overview 

The straight line calibration equation is a specific example of the more general problem of 
fitting a model to experimentally obtained data. Here the model is a straight line. For all 
fitting problems we must consider that: 

 There is uncertainty associated with the input values (both on the horizontal and the 
vertical axes) 

 There may be some correlation associated with input values  
 The output of the fitting problem will include the model parameters (for the straight 

line, the slope and the intercept) and their covariance matrix (providing the 
uncertainty associated with each of them and the correlation between them). The 
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output parameters will always have some associated correlation because they were 
derived from the same input values. 

 The uncertainty obtained from the fit assumes that the model is correct. We also 
need to consider any uncertainty associated with the suitability of the model used. 

The straight line fit is considered in detail in the subsequent subsections. This subsection 
provides an ‘intuitive’ overview of the analysis. 

If the measured data values that will be fitted by the straight line have only random errors, 
i.e. the uncertainty associated with those data values is associated only with random effects, 
then the straight line will ‘average out’ some of those effects. The fit will go through the data 
with points either side of it.  Because of this, the uncertainty associated with a value 
determined from the straight line is smaller than the uncertainty associated with any one 
measured value that went into the fit (Figure 16, left). One way to understand that is that the 
fitted parameters are determined from all the measured data, just as in an average, the 
average is determined from all the values. And therefore, as in an average, the uncertainty 
associated with the fitted point is generally smaller than the uncertainty associated with the 
individual measured values. 

If the measured data points that will be fitted by the straight line have systematic errors, i.e. 
the uncertainty associated with those data values is at least partially associated with 
systematic effects, then the fitted line will not correct for these common effects32. This means 
that this uncertainty associated with systematic effects will be ‘built into’ the straight line 
obtained, and the uncertainty obtained from points on the straight line will not be reduced 
through averaging (Figure 16, right). 

 

Figure 16 A straight line fit, on the left with random errors only. Here the fit is much closer to the ‘true’ 
value than are individual points. On the right with systematic and random errors. Here the fit shows an 
offset from the true value because of the systematic effect common to all the measured data points. 

                                                 

32 Note that systematic effects can have different values from point to point if there is a sensitivity coefficient that varies, for 
example a systematic stray light effect may affect higher radiance levels more than lower radiance levels, providing a ‘tilt’ to 
the straight line. 



 EMRP-ENV04-D5.2.2 
 Version 1 

~ 66 ~ 

 

This is why it is important to understand the dependence of the input data values on random 
and systematic effects by assigning a covariance matrix to them.  That is done for the APEX 
sensor as discussed in Section 6.3. 

The outputs of a fitting process are the model parameters – in this case the slope and 
intercept of the straight line. Whether or not the input values have associated correlation, 
these output parameters will always be correlated because they were derived from the same 
input values. Parameters are derived from the fit, so in this case, when the APEX instrument is 
in flight, the measured scene digital numbers are converted to a scene radiance using the 
gain and offset (Equation (6.1)). Because the gain and offset are correlated due to the fit, the 
uncertainty associated with the output quantity (scene radiance) must consider the full law of 
propagation of uncertainties. This is discussed in Section 6.6. 

The final consideration is whether the model we use, in this case the straight line, is an 
appropriate fit to the data. The uncertainties associated with values obtained from the model 
are usually surprisingly small, because of the ‘averaging’ effect described above. This may 
not be a ‘true’ representation of the uncertainty associated with the output, however, if the 
fit is not a good fit to the measured data. This is discussed in Section 6.5. 

6.3 Calibration data and uncertainties 

The overview in the previous section shows the importance of understanding the covariance 
of the input measured values. There are three ways to estimate this: 

 If they have come from a previous step involving fitting or interpolation, the 
associated covariance matrix will be calculated in that step. 

 If they have come from experimental data or data modelled in a Monte Carlo 
simulation, then the correlation can be estimated using the equations in Section 
3.5.3. 

 If they come from experimental data and you have a reliable instrument model, you 
will be able to estimate the covariance from your understanding of the processes, as 
described in Section 3.5.2. 

The third approach is often the most useful and it is this approach that is used in the APEX 
example. The gain and offset for the APEX instrument (at each spectral channel analysed 
independently) are determined from measurements made of the response of APEX to light of 
different radiance levels. The different radiance levels come from introducing neutral density 
filters in front of the integrating sphere. 

The two variables are source radiance and the signal (digital numbers) on APEX. Which is 
considered the x-variable and which the y-variable depends on whether Equation (6.1) or 
(6.2) is used. The second of these equations is more intuitive – we vary the radiance level and 
see the measured signal, but the former is more easily applied to a scene radiance 
calculation later as it directly provides the gain. 
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Either way, in order to fit the straight line, we need to determine the uncertainty associated 
with measured values of the two variables: signal and source radiance. In order to determine 
the covariance we need to determine what is common to the measured values and what 
varies from measurement to measurement. 

Considering first the signal (digital numbers); as discussed in Section 5.4.4 the uncertainty 
here comes from noise on the light signal and noise on the dark signal. Noise, by definition, 
changes from measurement to measurement, and therefore the signal values are considered 
entirely uncorrelated33 for all the signal-radiance level pairs. 

The uncertainty associated with the source radiance is discussed in Section 5.4.3. It comes 
from the sphere radiance uncertainty (itself a result of the chain described generally in 
Section 5). It also comes from the uncertainty associated with the filter transmittance 
measurement, optical interreflections between the sphere and the filters, temperature 
sensitivities of the filters in front of the spheres, sphere stability and filter ageing. 

The dominant uncertainty here is that associated with the sphere radiance. This is common 
to the measurements at all radiance levels as it is the same sphere used. The next most 
dominant uncertainty is the calibration of the filters by NPL. This will introduce partial 
correlation because NPL has measured all the filters on the same facility using the same 
technique. Generally speaking, measurements at an NMI will minimise the uncertainty 
associated with random effects, by taking repeat readings. Therefore it is likely that although 
this is ‘partial’ correlation, the correlation coefficient will be high. Interreflections are likely to 
be similar for all filters and since all the filters are the same type (neutral density filters), their 
temperature sensitivities and ageing rates may be similar. There may be some filter-
dependent ageing and the sphere instability. Overall, the measured values can be considered 
‘highly correlated’ and as a first approximation, ‘fully correlated’.  

Thus we have the situation where the signal levels (digital numbers) are entirely uncorrelated 
and the source radiance levels are entirely correlated. The covariance matrix is therefore 
simple to produce. The covariance matrix is square with 2n  rows and columns where n  is 
the number of  ,i ix y  measured points used for the fit.  It effectively has four quarters, each 

square with n n  values. The top left quarter represents the covariance between the different 
x-values. The bottom right quarter represents the covariance between the different y-values. 
The bottom left and top right quarters represent the covariance between the x-values and 
the y-values. These are uncorrelated and these quarters have zeroes throughout. Down the 
diagonal is the variance (the squared uncertainty) associated with each measured value 
individually.  

                                                 

33 Note, that if the same dark reading is subtracted for each radiance level, then there will be a correlation introduced by this 
choice. Such a decision may be made if the dark signal is relatively stable, as a way of saving time. Generally, this decision 
is made if the dark signal is small in comparison to the light signal. And therefore the introduced correlation will also be 
small. 



 EMRP-ENV04-D5.2.2 
 Version 1 

~ 68 ~ 

 

 The ix  terms – or rather, the source radiance levels, sph-filt,iL , are considered fully 

correlated. If they have an associated relative uncertainty (expressed in percent) of 

 rel sph-filtLu , then for that quarter of the covariance matrix the diagonal terms are  

 2 2
rel sph-filt,sph-filt iLu L   (i.e. the absolute uncertainty squared) and all off-diagonal 

elements are  2
rel sph-filt, sph-filt,sph-filt i jLu L L  (i.e. the product of the two absolute 

uncertainties). 
 The iy  terms – or rather, the signal (digital number) terms APEX,cal,iDN , are considered 

uncorrelated. If they have an associated relative uncertainty of  rel APEX,cal,iu DN , then 

for that segment of the covariance matrix, the diagonal terms are 

 2 2
rel APEX,cal, APEX,cal,i iu DN DN   (i.e. the absolute uncertainty squared) and all off-

diagonal elements are 0. 

Therefore, writing for compactness  2 2
rel sph-filt, sph-filt,sph-filt i j s f i jLu L L u L L  and 

 2 2 2 2
rel APEX,cal, APEX,cal, ,i i DN i iu DN DN u DN , the full covariance matrix34 is 
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 (6.3) 

i.e. the block in the top left corner has terms to account for the covariance. The block in the 
bottom right corner has values down the diagonal only, and the bottom-left and top-right 
corners are all zeroes. 

Note that this process has to be repeated separately for each spectral band. The covariance 
matrix for each will be different, even if the relative uncertainties are the same at each 
wavelength, since the absolute value of radiance (and hence absolute uncertainties) are 
different. 

                                                 

34 The red terms in Equation (6.3) are helpful labels that would not normally be included in this equation. They show how the 

different rows and columns represent the different ix  values and then iy   values. 
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6.4 Determining the fit coefficients (doing the fit) 

6.4.1 Approaches to take 

There are different approaches that can be taken to estimating the fit parameters and their 
associated uncertainty. Most of these will be some form of least squares analysis and least 
squares analysis can be performed at different levels of complexity. The least complex would 
be unweighted least squares (the input values are given equal weight and no account is 
made of their associated uncertainty or correlation), then weighted least squares (the input 
values are given different weights depending on their associated uncertainty) and finally 
generalised least squares (the covariance matrix of the input values is taken into account in 
the fit).  

The associated uncertainty analysis can also be performed for these different levels of 
complexity. The most rigorous approach would use generalised least squares for the fit and 
obtain a covariance matrix for the fit parameters from this analysis. Here we consider the 
following levels of complexity: 

1. Using an unweighted fit and calculate the associated uncertainties and covariance 
using Monte Carlo simulation. 

2. Using a weighted fit and obtain the uncertainties and covariance from the process 
3. Using a generalised fit. 

The second and third of these are based on the concepts described in British Standard DD 
ISO/TS 28037:2010 “Determination and use of straight-line calibration functions”, which 
describes how to deal with all these cases and provides a ‘recipe’ for determining both the fit 
parameters and their associated covariance. Matlab code to apply those recipes is available, 
for free download, at: 

http://www.npl.co.uk/mathematics-scientific-computing/mathematics-and-modelling-for-
metrology/software-to-support-iso/ts-28037-2010(e) 

6.4.2 Unweighted fit and Monte Carlo 

Doing the fit 

Fitting a straight line to measured data points is a common procedure that is built into most 
programming languages. For example, in Excel, the formula35: 

=INDEX(LINEST($D$5:$D$14,$A$5:$A$14),1) will give you the slope of a straight line 
fit through the points with x-values in A5:A14 and y-values in D5:D14. The offset is given by: 

=INDEX(LINEST($D$5:$D$14,$A$5:$A$14),2) 

                                                 

35 INDEX(…,1) gives the first value in an array. INDEX(…,2) gives the second value. LINEST(y-values,x-values) returns an 
array where the first value is the slope and second value the offset. 
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In Matlab the equivalent command is written 

c = polyfit(x, y, 1); 

where  

x is a vector of measured x-values (here digital numbers) for one band at several radiance 
intensities. The length of x is N where N is the number of radiance levels multiplied by the 
number of measured values for each level (i.e. the total number of measurements).  

Y is a vector of the measured y-values. Here a vector of the APEX convolved input radiance, 
of same length as x with replications of the same values for each radiance level. 

c is a vector with two elements holding the slope  APEX1 G  and offset  0DN  of the linear 

fit. 

Both Excel and Matlab use “least squares analysis” to determine the fit, although with some 
minor differences in approach. Least squares analysis is a standard approach to determine 
the ‘best’ solution to a problem where there are more equations than unknowns. It 
determines the overall solution that minimises the sum of the squares of the residuals (the 
differences between the raw data and the fitted line).  

So, for a straight line, described by y a bx   , the function being minimised36 is 

   2

1

N

i i
i

S y a bx


      . (6.4) 

For a straight line, and for ordinary, unweighted, least squares, the solution can be calculated 
analytically using the following steps: 

 Step 1: Calculate the means of ix  and iy  :  mean ix x N   ,  mean iy y N   

 Step 2: Calculate the difference between each data point and the mean and sum the 
products: 
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 Step 3: Calculate the slope and intercepts: 
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36 This is not exactly how matlab does it. The polyfit routine can deal with polynomials and the straight line is a simple case. 
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 mean meana y bx   (6.5) 

     

This unsophisticated straight line fit assumes that all the data points have the same weight, 
that the variability is due to random noise only and there is no uncertainty associated with 
the x  values. It also does not provide an uncertainty associated with the calculated slope 
and intercept. 

Uncertainty estimate using Monte Carlo 

The unsophisticated straight line fit described above, and calculated using Equation (6.5) or 
the Excel or Matlab expressions given above, does not provide the uncertainties and 
covariance associated with the slope and intercept of the fitted straight line. While it is 
possible to calculate the uncertainty and covariance analytically (as described in the sections 
below), it is also worth37 considering an alternative – the use of Monte Carlo simulation.  

In Monte Carlo simulation, many (1000 or more) simulations are run, in each of which the 
input quantities are adjusted by a random variable within their uncertainties. In the example 
being considered here, we create a model for a perfect ‘true’ answer – by assigning an 
arbitrary but realistic value to the gain and offset and calculating true signal-system radiance 
pairs  ,i ix y  values. We then run a loop where in each loop errors are drawn from the 

appropriate probability distribution functions (usually a Gaussian distribution with a standard 
deviation equal to the associated standard uncertainty). In this case, for the signal (which is 
uncorrelated from point to point), a different error is drawn for each iy  within one loop. For 

the system radiance (which is fully correlated) the same error is drawn for all ix  (or the same 

relative error is drawn and multiplied by each ix ) within one loop. In the next loop, new 

random numbers are drawn from the distributions. 

At the end of each loop, a fit is applied to the data, obtaining a pair for the slope and 
intercept of the straight line. These pairs can be plotted, as shown in Figure 17. Having run a 
large number of loops, the uncertainty associated with each (slope and intercept) can be 
determined from the standard deviation of the values for that parameter. The covariance can 
be calculated using Equations (3.46) and (3.47). 

                                                 

37 The solution described here is pragmatic. It is often the case that some form of fitting or interpolation or other algorithm is 
used in a processing chain and that the algorithm has been determined with little thought for rigorous uncertainty analysis. 
Later an uncertainty budget is put together. In those cases, Monte Carlo provides a simple method to ‘upgrade the analysis’ 
to include uncertainties without rethink. The Monte Carlo analysis described here does not give the same answer as the more 
sophisticated approaches of the subsequent sections because the initial fit is still done with an unsophisticated unweighted 
least squares routine. The more sophisticated approaches take the uncertainties (and covariance) into account in the fit. 
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Figure 17 Plots of offset and gain for different loops of the Monte Carlo simulation. This shows a possible 
mild negative correlation (high values of one parameter tend to occur with low values of the other 
parameter). 

6.4.3 Weighted fit and analytical covariance 

Doing the fit 

In this case we consider fitting a straight line to measured data points with some associated 
uncertainties which may differ from point to point. For example, if the uncertainty associated 
with noise is higher at the lower radiance level measurements than for the higher radiance 
level measurements, then the fit should have a stronger weighting at the higher radiance 
level measurements. The method described here calculates both a slope and intercept for 
the straight line and their associated uncertainties and covariance using the uncertainties 
associated with the y-values. There is assumed to be no uncertainty associated with the x-
values. For the example considered here, it therefore makes sense to have the x-axis the 
radiance levels and the y-axis the signal (digital numbers) because the different radiance 
levels are (assumed to be) fully correlated, whereas the signal values have uncertainties 
associated with random effects. 

The calculation of the slope and offset is as follows: 

The weights38 are defined as 

                                                 

38 Because this term is squared in the subsequent equation, the actual weight is inversely proportional to the square of the 
uncertainty. 
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   (6.6) 

where  iu y  is the uncertainty associated with the measured value iy  (here the signal) at the 

set value ix  (for a given radiance level).  

The reference values are given by 
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 . (6.7) 

The slope (here APEX1 G ) is then calculated as 
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  (6.8) 

and the intercept (here 0DN ) as 

 0 0a y bx   . (6.9) 

The variance (squared uncertainty) and covariance associated with the slope and intercept are given 
by 
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  (6.10) 

Uncertainty analysis 

Here the uncertainty (and covariance) is given by Equation (6.10) under the initial conditions, 
i.e. that the uncertainties are only associated with random effects in the y-values (the signal). 
We did not take into account the uncertainties associated with the x-values (the radiance 
levels). Earlier we concluded that the radiance levels can be considered fully correlated. 
Therefore there is a systematic effect on the  x-values. If the error is an absolute error, an 
additive effect in the same units, then it would have the effect of shifting the entire straight 
line to the left or right. This would have no effect on the slope (hence instrument gain) or its 
associated uncertainty. It would, however, affect the offset (Figure 18).  A rigorous 
uncertainty analysis requires the full covariance matrix, but an indicative one can be 
determined by treating this as an uncertainty associated with the mean value, 0x  in Equation 

(6.9). The uncertainty associated with the intercept in Equation (6.10) would have an 
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additional term  2 2
0b u x  . This is by no means a rigorous analysis, but it provides an 

indicative uncertainty.  

 

Figure 18 An error in the ix  that is common to all values will shift the fitted curve (in this case to higher 

values). This has no effect on the slope, but will change the offset. 

6.4.4 Rigorous analysis 

A rigorous analysis would take into account the uncertainties and covariance associated with 
both the ix  and iy . A recipe for doing this calculation is given in the British Standard 

Standard DD ISO/TS 28037:2010 “Determination and use of straight-line calibration 
functions” and Matlab code is given in the link on page 69. The most general case is given in 
TS28037_GGMR1.  

The software requires as input: 

 The x-values in a vector 
 The y-values in a vector 
 A covariance matrix for the x-values (the top left quarter of the matrix in Equation 

(6.3)) 
 A covariance matrix for the y-values (the bottom right quarter of the matrix in 

Equation (6.3)) 

As output, the software provides: 

 The value of the slope (b ) 
 The value of the intercept ( a ) 

 The variance (squared uncertainty) of the slope  2u b   

 The variance of the intercept  2u a   

 The covariance of the slope and intercept  ,u a b   

 Validation information for the model in the form of a chi-squared test (see below). 
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6.5 Validating the fit 

The determination of the associated uncertainties given above assumes that the straight line 
fit is a ‘good fit’ to the measured data. This should be tested, using a statistic such as the chi-
squared statistic. Applying the chi-squared test involves two parts: determining the observed 
chi-squared, 2

obs  , and then comparing it with an appropriate chi-squared distribution. 

The observed chi-squared is calculated as the sum of squares of the weighted residuals from 
the measured data to the fit. For N  measured values, we calculate 

 
 
 

2

2
obs 1

N i i

i
i

y a bx

u y




  
  

 
   (6.11) 

Because it is calculated from statistical data, we expect the value of 2
obs that we obtain to be 

a sample from the appropriate statistical distribution. The distribution depends on the 
number of ‘degrees of freedom’. This is the number of measurements minus the number of 
fit parameters, or here 2N    . As the number of degrees of freedom increases (i.e. as 
more and more values were used to determine the fit), then the 2

  distribution becomes 

more symmetric and shifts to the right. The centre of mass of the distribution is the degrees 
of freedom (that’s the shift to the right). 

 

Figure 19 Chi squared distributions for different degrees of freedom 

The chi-squared test evaluates the probability that a particular observed value, 2
obs  came 

from the expected distribution 2
 . There are two common versions of this test. The first tests 

whether the value is less than the 95 % percentile of the expected distribution (i.e. it would 
only be failed 5 % of the time for good data). The second, the Birge ratio, compares the 
observed chi-squared with the expectation value (i.e. the number of degrees of freedom).  
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When the chi-squared test is failed it implies that the model does not adequately explain the 
data and a better model is required. 

6.6 Using the fit 

6.6.1 Analytical covariance when the fit is used 

However we determine the covariance, whether39 analytically or through Monte Carlo 
simulation, at the end of this process we have the equation y a bx    with the uncertainties 

associated with a  and b  and their covariance. The final step is to calculate for a given, 
measured y  the associated x . For the APEX calibration, we have determined the parameters 

using the provided radiance levels sph-filt ,iL as the ix  and the measured signal APEX,cal,iDN  for 

that radiance as the iy . We now need to calculate the radiance of a scene observed by APEX 

from a measured signal. This is done using Equation (6.1). Consider first the generic 
equation: 

  
y a bx

x y a b

 

 
  (6.12) 

Therefore, later, when the instrument is used, we measure a signal y  (with an associated 

uncertainty) and convert it to the parameter x . Here we measure  y  the scene signal in 

digital numbers (with noise in that scene signal) and we convert it to the scene radiance  x , 

using the second version of Equation (6.12). We have the sensitivity coefficients 
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Applying the full law of propagation of uncertainties, gives 
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  (6.14) 

It may help coding this into a language like MATLAB to write this same equation in matrix 
notation: 

                                                 

39 Note that there won’t be exactly the same values from these two processes, but they are likely to be similar 
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Translating this for the APEX calibration into its notation, scenex L  , sceney DN  ,

0 0 APEXa DN L G    and APEX1b G .  

6.7 Straight line interpolations 

The previous sections of this chapter have related to using a fit. Sometimes, however, data is 
interpolated rather than fitted. This is done when the data points are a reliable indication of 
the desired function and additional interpolated data points are required. It is often the 
means to obtain spectral information where measurements are made at a subset of the full 
set of wavelengths. The simplest interpolation is a straight line (linear) interpolation between 
data points (joining the dots in a graph with straight lines).  

A linear interpolation will take the form 

   1 0
0 0

1 0
i i

y y
y y x x

x x
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  


  (6.16) 

where the measured data points  0 0,x y  and  1 1,x y  have a spacing 1 0x x x    

horizontally, and 1 0y y y    vertically. We are interested in the uncertainty associated with 

the interpolated value iy  due to uncertainties associated with 0y   and 1y . We assume the 

horizontal scale has no associated uncertainty for simplicity. 

The sensitivity coefficients are 
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  (6.17) 

Note that both these sensitivity coefficients are fractions of the horizontal axis spacing. The 
first one, the sensitivity of the interpolated value to the first (left hand) point, is the fractional 
distance from the interpolation wavelength to the right hand point – i.e. the further it is from 
the right hand point, the more sensitive it is to variations in the left hand point. And vice 
versa for the second sensitivity coefficient. 

For a point in the middle, where both sensitivity coefficients are 1 2  , the determined 

interpolated value, is equally sensitive to both ends. The uncertainty associated with the 
interpolated value is therefore given as 
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And, if the two measured data points have equal uncertainties, the uncertainty associated 

with the interpolated value is reduced by 2 . This is clearly understood, as the interpolated 
value is the average of the two end points – and we have already seen that averaging 
reduces the uncertainty by the square root of the number of measured points. 

When the interpolated point is elsewhere than the midpoint, it will be more sensitive to the 
measured value it is closer to, and the uncertainty reduction will be smaller (assuming both 
measured data points have equal uncertainties). This can be seen graphically in the following 
diagram. The lines and solid points represent different random measurements of the two end 
points. Clearly the interpolated points are closer together than the two end points.  
Interpolation always appears40 to reduce uncertainties and the longer the distance over 
which the interpolation is carried out the more the reduction (the central points have smaller 
uncertainties than those closer to measured values). 

 

Figure 20 A linear interpolation between measured values at 300 nm and 350 nm. The spread of values at 
the two ends (at 300 nm and at 350 nm) is due to measurement uncertainty. It is clear that a point in the 
centre experiences a smaller range of values (and hence a smaller associated uncertainty) than the 
original measured values. 

Intuitively though, we realise that interpolation does not really reduce uncertainties. As with 
fitting, a blind application of the Law of Propagation of Uncertainties without thought can 
falsely underestimate uncertainties. Here, also, we must consider whether a straight line fit is 
an appropriate fit to the measured data. Consider, for example the following diagram. This is 

                                                 

40 See below. Interpolation reduces uncertainties from a mathematical perspective, assuming that the interpolation function is 
appropriate. 
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the spectral measured values for the external quantum efficiency of a trap detector, a 
standard reference silicon detector used at NPL. The blue dots are measured values, and the 
red line a linear fit. 

 

Figure 21 Measured and interpolated data for the quantum efficiency of a reference silicon trap detector. 
The 476 nm measured value is essential to determine the correct shape.  

If the measured value at 476 nm is removed, then the straight line fit would provide the 
dashed interpolation, with low uncertainties at 476 nm (as it is almost half way between the 
other measured data points). This uncertainty would woefully underestimate the true error at 
the missing data point. Again, as with fitting, some test needs to be performed to estimate 
the quality of the interpolation. Methods to do this include: 

 Use a higher order fit as well (say a cubic spline), and compare the interpolated 
values for the different fit parameters 

 If there is a large number of data points, interpolate taking out every other data point 
and compare the results with those points missing to the results with the points 
included 

 Take additional experimental values where you intuitively feel that the fit quality may 
be poor (our hand drawn lines are generally closer to the true value than linear fits). 
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7 Spectral Selection 

Most radiometric earth observation sensors have some spectral selection to obtain spectral 
information of the scene. Whether this is in the form of a few broad spectral bands, defined 
by a filter, or of a high resolution spectral dispersion in a spectrometer, spectral selection 
provides wavelength-dependent information and has its own uncertainty requirements. This 
section discusses the uncertainty aspects of spectral selection.  

In many imaging systems a two-dimensional array provides simultaneous spectral and 
spatial selection. Many of the concepts described here for the spectral channels also apply to 
the spatial channels. 

7.1 Spectral response function 

The two most common methods for spectral selection are to place a filter in front of an 
individual detector, or to have a dispersive element (a grating, or occasionally prism) and an 
array detector.  Whichever method is used, the instrument is defined by the ‘spectral 
response function’ (SRF), which is the spectral responsivity of the combined instrument 
(including both the transmittance – or reflectance – of the filter or dispersive element and 
the responsivity of the detector and spectral transmittance through any other optical 
element in the path e.g. telescope). 

The most accurate way to determine the spectral response function is to scan a spectrally 
tuneable laser across the spectral response region of interest of the instrument, and a little 
beyond, and compare the response of the instrument at each laser wavelength to the 
response of a reference detector of known spectral responsibility. However, although ideal, 
tuneable lasers are not always readily available and sometimes the added complexity is 
unnecessary for the required accuracy.  For a filter system a more common alternative is to 
obtain tuneable monochromatic radiation using a monochromator illuminated by a lamp. 
Here it is necessary to ensure that the bandwidth of the monochromator is sufficiently 
narrow not to distort the measured spectral response function. For a spectrometer-based 
instrument a similar process can be followed, or, making the assumption that the 
spectrometer’s responsivity is constant over a bandwidth, the signal from adjacent 
spectrometer pixels can be used to determine the spectral response function. 

Where a spectrometer has many pixels, for example for the APEX imager described in 
Section 5, which has up to 530 spectral bands for each of 1000 spatial channels, then it is not 
possible to determine the SRF independently for all bands (pixels). Instead the SRF is 
determined for several pixels using a lamp illuminated monochromator that is tuned across 
the spectral band of the measured pixels. A Gaussian is fitted to the measured data as the 
monochromator wavelength is tuned and from the Gaussian fits two parameters are 
obtained: the bandwidth and the centre wavelength. These are plotted as a function of pixel 
number and therefore Gaussian functions can be determined for all other pixels by 
interpolating of extrapolating the measured data. A similar method was used for the MERIS 
satellite imager [4]. 
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7.2 Uncertainty associated with the spectral response function 

The uncertainty associated with the determined spectral response function comes from 
several sources: 

 Uncertainties relating to the spectral measurements 
o Uncertainties associated with the wavelength of the monochromatic light 

used (particularly the wavelength scale of the monochromator) 
o Uncertainties associated with the bandwidth of the monochromatic light used 
o Uncertainties associated with noise in the measurement of the spectral 

response function 
 Uncertainties relating to the interpolation 

o Where a spectral response function is determined for measured data at a set 
of wavelengths, this relates to the interpolation between the measured data 
points (the monochromatic illumination used). Were sufficient wavelengths 
used for the illumination source to determine the full shape of the spectral 
response function? 

o Where a Gaussian (or similar function) is fitted to the measured spectral 
response function this relates to to what extent a Gaussian is a ‘good fit’ to 
the measured data points.  

o Where the SRF of only a few pixels of an array are fully characterised, and 
these properties are then interpolated for other pixels of the array, it relates to 
the quality of the SRF thus determined compared to the ‘true’ SRF for those 
intermediate pixels. 

 Uncertainties relating to changes since calibration[12] 
o The SRF may change simply due to ‘storage’ – this is particularly true for 

interference-filters. 
o The SRF may change due to vibrations on transportation and launch. 
o The SRF may change due to changes of temperature, humidity and the move 

to vacuum. 
o The SRF may change due to both ultraviolet and high energy solar radiation 

damage. 
o Contamination films can change spectral and absolute levels of transmittance. 

It is beyond the scope of this document to provide a rigorous analysis of all of these 
concepts. The size of each effect must be estimated for an instrument of interest – and this 
can be done through experimentation or modelling. For example, an estimate of the noise 
on individual SRF data values can be obtained by repeating the calibration multiple times 
and observing the spread of obtained results and an estimate of the effect of interpolation 
can be obtained by using different interpolation functions (see Section 6.6). The quality of 
the fit can be tested using the types of test described in Section 6.3, or by trying different 
models. Estimates of change since calibration can be obtained by calibration before and after 
use or before and after simulated exposure to a space-like environment. 
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Note also, that where two parameters are fitted from the same data, then there will be some 
correlation between the two fit parameters; this is discussed further in Section 7.3.3.  

What we are really interested in estimating is the uncertainty associated with the measured 
value obtained by the instrument (of e.g. spectral radiance) due to the uncertainty associated 
with the SRF (itself a result of all these effects). To understand this we need to realise that 
any spectral measurement relies on a spectral integral or convolution with the spectral 
characteristics of the scene under observation and this is the subject of the next section. 

7.3 Spectral integrals and convolution 

7.3.1 Origin of spectral integrals 

In Section 5, the APEX instrument calculation equation was given by Equation (5.6): 

 scene APEX APEX,sceneL G DN  . 

If we convert this to give the measured signal on APEX as a function of the radiance of the 
scene we get the equation 

 APEX,scene scene APEX APEX sceneDN L G R L   . (7.1) 

where APEX APEX1R G is the APEX responsivity. In practice, this equation oversimplifies the 

process because a pixel of the APEX imager does not measure a single wavelength, but has a 
SRF. Therefore equation (7.1) should be written as 

    APEX,scene SRF,APEX 0 scene;  dDN R L       (7.2) 

where  SRF,APEX 0;R    is the spectral response function of the APEX pixel centred on 

wavelength 0 . 

Whatever the instrument, whether it uses a spectrometer or a filtered system to define the 
wavelength band, the real measured value will be some equation that is of the form of (7.2). 
The spectral response function implicitly creates a weighted integral of the scene radiance. 
This is sometimes described as a spectral convolution. 

In some cases, where the SRF is narrow band, the subsequent analysis treats the measured 
value as though it were made at the centre wavelength and was truly monochromatic. In 
these cases, the problem is treated as one of ‘instrument bandwidth’ and the uncertainty 
analysis should consider the uncertainty associated with the assumption that the 
measurement is effectively made at a single wavelength.  

Generally, though, for both imaging spectrometers and filtered instruments, the measured 
signal must be treated as a band-integrated quantity and interpretation of the results must 
acknowledge the implicit integral described by Equation (7.2). This interpretation usually 
relies on some knowledge of the spectral radiance of the scene at a higher resolution than 
the measurement provides. For example, in Figure 22 we model the output (red dots) of the 
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Landsat-ETM instrument by integrating a scene radiance measured with a higher resolution 
ASD spectrometer (blue) and the SRF of the Landsat-ETM bands (green).  

 

Figure 22: Example of a broadband sensor convolution, synthesising a radiance spectrum measured with 
an ASD spectrometer with Landsat ETM. (Note red line for indication only, only the dots have meaning – 
they provide band-integrated radiance values). 

 

7.3.2  Calculating the integral 

In the analysis of the measured values from any sensor, there is a need to determine 
integrals of the form of Equation (7.2). Generally the relevant spectra are provided as discrete 
values at given wavelengths. A common method for evaluating such intervals is the 
trapezium (or trapezoidal) rule which approximates the integral by treating the integrand as 
varying linearly between adjacent measurement points (Figure 23). 
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1 2 3
 

Figure 23 Trapezium rule diagram 

The trapezium rule replaces the integral in Equation (7.2) with a summation 

    APEX,scene SRF,APEX 0 scene
1

;
N

i i i
i

DN S L  


     (7.3) 

where i , which depends on the wavelength spacing either side of i , is an appropriate 
weighting term. If the data are evenly spaced, such that 1i i      for all wavelength steps, 

then, for the trapezium rule 
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
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   (7.4) 

Higher order rules (that fit different piecewise polynomials to the data) are also available [13] 
and may be suitable where the trapezium rule over-simplifies the analysis. Some care is 
needed if the two spectra multiplied (the scene radiance and the instrument SRF) are at 
different wavelength steps. In these cases at least one41 of the spectra should be interpolated 
to the wavelengths of the other spectrum. Where one spectrum is smooth and the other 
‘spiky’ then the smoother spectrum should be interpolated. This is a strong case for replacing 
the instrument SRF with a fitted Gaussian, which can then be defined at any wavelength, 
when it is then multiplied by a measured scene radiance with considerable structure (for 
example due to atmospheric or solar atomic/molecular absorption lines). 

7.3.3 The uncertainty associated with the integral 

A detailed analysis on determining the uncertainty associated with integrated quantities is 
available for download at www.tinyurl.com/NPLintegrals. That report was written for lighting 
applications but many of the concepts apply equally for satellite bands42.   

                                                 

41 There are occasions when it is appropriate to interpolate both spectra to the wavelengths of each other 
42 Emma Woolliams hopes to write a version of that report for satellite band applications sometime in the latter half of 2014. 
In the vocabulary of that report, the integral given above as Equation (7.2) is an “experimental product integral”.  
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Section 7.2 listed different sources of uncertainty associated with the SRF itself. These 
different categories of uncertainty have different effects on the integral.  

Uncertainties relating to the spectral measurements 

When the integral is determined using the trapezium rule from the raw measured SRF, then 
noise in the individual measured values of the SRF will affect the determined integral. 
However, the nature of noise is that it is random, therefore while one point may be 
determined a little higher than the true value, there is likely to be another point determined 
a little lower than its true value. Thus to some extent the noise will be ‘averaged out’ by the 
integration process. Integration, like averaging, reduces the effect of noise. The extent to 
which the noise is reduced depends on the number of measured values describing the SRF 
(more points increases the ‘averaging out’ effect) and whether the reduction is sufficient to 
make noise negligible depends on how noisy the data are in the first place, however, 
generally speaking, noise in the determination of the SRF is a tiny contribution to typical 
uncertainty budgets. 

The uncertainty associated with the integral due to noise can be calculated either through 
Monte Carlo simulation (introducing noise to all data points as separate draws from a 
Gaussian probability distribution function) or analytically. An analytical expression is 
obtained from the summation in Equation (7.3). If we write the first three terms out, we get 

 APEX,scene 1 1 1 2 2 2 3 3 3 .DN R L R L R L         (7.5) 

where 1 1 1R L  is shorthand for    SRF,APEX 1 0 scene 1 1;R L    . If we apply the law of propagation 

of uncertainties to this for an uncertainty associated with 1R  , we need the sensitivity 

coefficient 

 APEX.scene
1 1 1

1
R

DN
c L

R


 


   (7.6) 

And thus the law of propagation of uncertainties (considering only uncertainties associated 
with the iR  ) is 

              2 2 22 2 2 2
1 1 1 2 2 2 3 3 3u DN L u R L u R L u R         (7.7) 

Which, written in summation notation makes 

       
22

APEX,scene SRF,APEX 0 scene
1

;
N

i i i
i

u DN u R L  


      . (7.8) 

Uncertainties relating to the interpolation 

This category describes uncertainties associated with the original determination of the 
spectral response function and the assumptions made in its determination. Where discrete 
measured values are used to estimate the SRF this relates to whether sufficient measured 
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values have been made to describe the SRF43. Where the SRF is modelled by a Gaussian, this 
relates to the suitability of that Gaussian approximation and any loss of information from 
truncating the Gaussian over a finite range. Where the SRF is only determined for some 
bands and the SRF of intermediate bands is estimated through interpolation of, for example 
centre wavelength and bandwidth, this relates to the approximations introduced by those 
processes. 

It is usually not possible to give a definitive uncertainty associated with these effects. Such a 
definitive uncertainty implies being able to compare the SRF used with a more accurate one 
– but if a more accurate one were available, it would be used. There are, however, techniques 
that can be used to estimate some of these uncertainties. 

To estimate the uncertainty associated with whether sufficient measured points are available 
to describe the SRF and to use the trapezium rule can be estimated by comparing the 
trapezium rule value with the value obtained from a higher order integration rule, or by 
comparing a trapezium rule calculation with the raw data interpolated first using a higher 
order rule (such as a cubic spline interpolation). It may also be useful to recalculate the 
integral with half the measured data points (every other point) and compare those values. 
None of these methods will give a definitive answer, but they will indicate whether or not the 
effect can be considered negligible. 

Where the SRF is modelled by a Gaussian, then an estimate of the uncertainty associated 
with this assumption can be made by comparing the integral calculated with the Gaussian to 
that calculated from the measured SRF using the trapezium rule.  Because the integral 
involves the scene radiance, and real scene radiances are likely to be quite ‘spiky’, this should 
be done by interpolating (using e.g. linear interpolation) the measured SRF to the 
wavelengths at which the scene radiance is defined. 

To estimate the uncertainty associated with the interpolation of the Gaussian defining 
parameters (bandwidth and centre wavelength) from measurements for a few pixels, it is 
necessary to model the process. This can be done, for example, by running a Monte Carlo 
simulation on the measured data. For the APEX calibration, a Monte Carlo simulation was run 
on the full process. First noise was added to the raw measured SRF and different Gaussians 
were obtained this way (Figure 24). 

                                                 

43 Which in turn relates to whether the trapezium rule is an appropriate method for integration – because that assumes that 
you can join the measured points with straight lines. 



 EMRP-ENV04-D5.2.2 
 Version 1 

~ 87 ~ 

 

 

Figure 24 Different Monte Carlo simulations of the fitted Gaussian to the raw SRF 

Then additional noise was added to account for systematic effects, and a simulation run of 
the interpolation to non-characterised pixels (Figure 25). 

 

Figure 25 Different Monte Carlo simulations to the interpolation 

From this a probability density cloud was obtained for the centre wavelength and bandwidth 
of one of the intermediate pixels (Figure 26). This cloud provided uncertainties associated 
with both the interpolated bandwidth and the interpolated centre wavelength, as well as the 
covariance (see Section 3.5.3). 
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Figure 26 Probability density cloud of the bandwidth and central wavelength from the Monte Carlo 
Simulation for band 68 of the APEX VNIR detector 

From the uncertainty associated with the bandwidth and central wavelength, we need to 
determine the uncertainty associated with the integrated quantity calculated in Equation 
(7.2). This can be done either by continuing the Monte Carlo simulation and determining the 
integral numerically for each Gaussian obtained, or by differentiating the Gaussian analytical 
equation with respect to the centre wavelength and bandwidth respectively and thus 
obtaining the sensitivity coefficients needed for the law of propagation of uncertainties.  

Uncertainties relating to the wavelength scale of the SRF 

Where the SRF is determined experimentally using a lamp-illuminated monochromator 
(rather than a laser), there will be uncertainties associated with the wavelength scale of the 
monochromator and with the bandwidth of the monochromator making the measurements. 
The monochromator bandwidth will have the effect of ‘compressing’ the peak of the SRF, 
making it broader and shorter.  

Wavelength uncertainties fall into three44 categories –  

 those due to a systematic spectral offset that applies to measurements at all 
wavelengths (a wavelength scale error)  

 those due to a wavelength dependent offset – where the same error occurs every 
time the monochromator is set to a given wavelength, but this error is random from 
one wavelength to the next 

 a random effect (the reproducibility of the wavelength scale over short time periods).  

                                                 

44 See also section 7.3 of the Integral Uncertainty report found at www.tinyurl.com/NPLintegrals, which describes three 
types of wavelength effect.  
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Generally speaking, the systematic spectral offset, and some of the wavelength-dependent 
offset will be corrected through calibration of the wavelength scale of the monochromator. 
There may, however, be a residual uncertainty associated with these calibrations. When the 
SRF is determined on multiple occasions, then random errors in the wavelength scale will 
show up as random effects in the measured values and these can be treated as described 
above. 

A systematic spectral offset (common to all wavelengths) will shift the SRF to longer or 
shorter wavelengths. How significant this is depends on how quickly the scene radiance 
changes as a function of wavelength. Consider, for example the case of a SRF that is close to 
an atmospheric absorption feature. A small wavelength shift could have a significant impact 
on the interpretation of a measured signal if the shift changes whether or not that 
absorption feature is considered to be within the bandpass of the sensor. In contrast, if the 
scene radiance is only slowly changing with wavelength, then a small wavelength shift will 
have almost no impact. It is best to estimate the uncertainty associated with spectral effects 
by modelling such a wavelength shift for typical scene spectra.  

A spectral offset that varies with wavelength will almost always have a smaller impact than a 
systematic spectral offset especially when there is no correlation from one wavelength to the 
next. This is because of the averaging effect of the integral and the fact that it is reasonable 
to assume that some offsets will be to longer wavelengths and others to shorter 
wavelengths. Again, the uncertainty associated with the integral due to this effect will 
depend on the scene radiance itself and how that changes with wavelength. It is often 
reasonable to assume this effect is negligible, although modelling could be used to estimate 
the size of it. 

Uncertainties related to changes since calibration 

The different effects described in Section 7.2 as uncertainties relating to changes since 
calibration will all affect either the absolute level of the SRF (the instrument gain), or they will 
change the shape of the SRF – shifting it in wavelength, broadening it or creating a spectral 
tilt. The uncertainty associated with changes since calibration can only be estimated from an 
understanding of the likely changes and modelling what effect that has on the integral[12]. 
The impact of these effects will be larger if the scene radiance has sharp spectral features.  

7.4 Stray light (out of band) 

Out-of-band stray light is where light is scattered onto the ‘wrong’ pixel. Spectral stray light 
is where light of one wavelength is measured as though it were at a different (wrong) 
wavelength, due to scattering mechanisms within the instrument. One method to correct for 
out of band stray light is to use a cut-on filter to remove all light below the filter’s cut-on 
wavelength. Signals measured at the lower wavelengths are entirely due to stray light and 
can be removed by subtraction, perhaps weighting the subtracted signal by the long 
wavelength transmission of the cut-on filter. Using a series of bandpass or blocking filters to 
restrict the range of wavelengths entering the spectrometer allows measurements to be 
made over a truncated spectral range without the influence of stray radiation at wavelengths 



 EMRP-ENV04-D5.2.2 
 Version 1 

~ 90 ~ 

 

outside this range. If a series of such bandpass filters are used, each tailored for a given 
spectral region, it is possible to make measurements over a broad spectral range whilst still 
ensuring good stray light performance is achieved [14].  

Stray light can also be characterised and corrected using a monochromatic source. A 
tuneable laser (or, with care, a narrow bandwidth monochromator) is used to scan 
sequentially through each wavelength in turn. The response at other wavelengths to this 
monochromatic light is used to create a stray light correction matrix which can then be used 
to correct stray light in any measured spectrum [15-17]. 

If uncorrected, stray light can cause very large errors in the spectrum measured by an array 
spectrometer, even errors greater than 100 % in the blue end of a solar spectrum measured 
using an array spectrometer with significant short wavelength stray light. Such an error will 
change the value of any integral calculated from that spectrum, and the size of the effect will 
depend on where in the spectrum the stray light occurs. If corrected, the correction method 
will introduce mathematical correlation to the measured spectral irradiance, which is best 
described using a covariance matrix. 

Stray light can also come from out-of-field (spatial stray light). This can be significant, 
especially if the scene viewed is inhomogeneous. For example, if one pixel is viewing 
vegetation and an adjacent pixel a cloud or water there could be a significant effect on the 
observation with the bright pixel scattering light into the dim pixel. This effect can be 
modelled from a pre-flight determination of the Modular Transfer Function (MTF) of the 
instrument. Some post-launch evaluation can be carried out, particularly for high spatial 
resolution sensors where the impact is most pronounced, using chequer board or edge 
targets with sharp high contrast edges.     

7.5 Spectral and spatial effects 

This chapter has provided an overview of some of the considerations required for uncertainty 
analysis for spectral and spatial effects. Generally, these effects have to be modelled with a 
good instrument model and the sensitivity coefficients determined numerically. This is still 
the subject of research, and this chapter has simply introduced some methods that can be 
used. 
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8 Post-launch calibration and Level-1 EO products radiometric 
uncertainty 

8.1 Imager changes in orbit 

The spectral response function of a satellite sensor is likely to change on the transition to 
orbit (through the vibration and temperature cycles of launch, through the difference 
between vacuum and air operation) and once in orbit (reversibly due to temperature cycles, 
or irreversibly due to solarisation and other damage). Such changes affect the SRF, and 
similar effects will also alter the instrument gain, dark offset and linearity as components, 
such as mirrors or electronic systems are damaged by high energy radiation and vibration.  

An example of reversible effect is the impact on the Dark Signal levels when measuring 
near an area named the South Atlantic Anomaly (SAA), Figure 27. At this area, high energy 
particles are confined in the inner Van Allen belt which is translated into spontaneous peaks 
in the readings levels as detected by the MERIS sensor in [4].  

 

 

 

 

 

 

 

 

 

However, this same effect of space radiation as well as other effects like the radiation of the 
sun itself, the changes of temperature and so on; can produce long term drifts in the 
instrument gain and spectral responses which are accounted as irreversible effects. The 
example in Figure 28, from [18] shows how the gain of MODIS Terra and Aqua gains as 
changed during the mission lifetime as monitored by the sun diffuser calibration system.  

Figure 27 MERIS Dark offset during orbit 252, OCL-ON (left), orbit 292, OCL-ON (right), band 16 
(smear band), vs. pixels (front axis) and time. Spikes are clearly visible at the right image when
crossing the South Atlantic Anomaly (SAA).  
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Figure 28 Trends of Terra and Aqua MODIS gains for bands 1–7 and 26 obtained from the SD/SDSM 
measurements. The solid and dashed lines are for mirror sides 1 and 2, respectively, from [18] 

It is nevertheless true that some of these changes can be well characterised and modelled 
pre-flight. However, these models have a limited reliability and cannot account for all 
scenarios (e.g. contingencies during the operational phase) and they typically need to rely on 
a validation and/or update in-flight.  

Such an update is done using an optics degradation model [19] which provides an 
exponential trend for the degradation of the optics in space environments. It was firstly used 
for the SeaWiFS mission and later on in the MERIS mission, in both cases it was necessary its 
validation and/or update using either Earth, moon or sun diffuser measurements. 

The pre-flight calibration and characterisation provides a record of the instrument 
performance prior to launch and it is a useful indication and/or correction of the 
performance once in orbit. However, it is necessary to monitor the instrument performance 
in-flight so that the effects (reversible or irreversible) of working in a space environment are 
well validated and/or updated in the instrument calibration and characterisation. 

8.2 On-board calibration systems 

One method for characterising changes during flight, is to provide on-board calibration 
systems. For example, the on-board spectroradiometric calibration assembly for MODIS 
provides a characterisation of the SRF (spectral response function) and also a radiometric 
and spatial calibration. MODIS also has a blackbody as a prime calibration source for the mid 
and long-wave infrared bands (3.5 μm – 14.4 μm). In-flight blackbodies operating at 
temperatures around the instrument ambient temperature (typically45 273 K – 315 K) are 
commonly used as references for infrared instruments as these can be made to be 

                                                 

45 although other temperatures are used depending on the application 
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reasonably stable. Finally MODIS, like many other earth observation satellites, has an on-
board diffuser which can be placed in front of the earth imager to reflect (diffusely) sunlight. 
This provides a radiance-based reference, allowing top of atmosphere (TOA) radiance to be 
determined by reference to a value of the solar spectral irradiance46. MERIS had an additional 
‘pink diffuser’ for spectral calibration (with absorption lines used to check the MERIS 
spectrometer wavelength scale) as well as the white diffuser. Some satellites have on-board 
lamps as radiometric references.  

The most important thing to note with on-board calibration systems is that they themselves 
also require pre-flight radiometric characterisation and are also subject to change on transfer 
to orbit, and once in orbit due to the same mechanisms that affect the imager itself. Some 
such changes are more significant than others – for example, an on-board blackbody will 
usually be less liable to change during orbit than an on-board diffuser47.  

One method to deal with this is to have a ‘spare’ on-board calibration reference or a 
monitoring system that is used less often than the main calibration reference. For example, 
MERIS had a second white diffuser plate that was deployed every three months to monitor 
the degradation of the frequently used plate48. A second approach is to have additional 
instruments to monitor the degradation. The MODIS satellite carries a “solar diffuser stability 
monitor” – an integrating sphere with nine filtered detectors (for nine narrow SRFs from 
400 nm to 1000 nm) mounted on it that view a dark scene, direct sunlight and then the solar 
diffuser. The results of using these two systems to monitor the diffuser degradation are 
shown in Figure 29. 

a) b)  

Figure 29 On-board solar diffuser degradation a) for the different spectral bands of MERIS, b) for MODIS 
AQUA at 412 nm. Figures taken from a) MERIS 65th Cyclic Report [20]. And b) [21]  

                                                 

46 Usually obtained from other missions – although the choice of solar spectrum, and how to convolve it with the instrument 
SRF is itself the subject of some debate and results can be significantly changed when different choices are made. See also 
section 8.5.1 
47 Although care does need to be taken regarding the contact thermometers that measure its contact temperature and are used 
to predict the effective radiation temperature. Changes in thermometers can occur, and their physical contact with the 
blackbody can change, producing gradients and biases. 
48 This is based on the assumption that most changes in the diffuser are due to illumination of the panel by the sun, and in 
particular due to the ultraviolet exposure and therefore a diffuser used less frequently will be degraded much more slowly 
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Of course any ‘spare’ calibration reference and any monitor to check that reference will also 
degrade in orbit. The expectation is that the degradation of the spares and monitors will be 
significantly less than that of the primary reference and can be considered small (and ideally 
negligible) within the uncertainties sought by the mission. 

Most of the effects described in this chapter are corrected for by the instrument science 
teams. For example, the raw spectral diffuser degradation for MODIS shown in the blue 
circles of Figure 29b, leads to a correction (the red diamonds) that is applied to the pre-flight 
calibration of the diffuser to obtain the values for in-flight use.  

In section 8.5 the PTFE diffuser calibration will be used and generalised as much as possible 
to provide a simplified example of a post-launch uncertainty budget.  

8.3 Vicarious cal/val 

In addition to (or, in many cases, instead of) on-board calibration systems, satellites use 
vicarious calibration and validation (cal/val) as a means of checking the radiometric stability 
of their on-board instruments, as well as providing comparisons between different satellites 
and therefore understanding inter-satellite bias. In some cases, this vicarious calibration can 
provide absolute radiometric gain calibration coefficients. Validation of satellite data 
products is also performed – comparing the higher level satellite products (e.g. sea surface 
temperature, ocean colour, vegetation indices, etc.) with in-situ measurements of these 
products.  

Radiometric calibration and validation of basic satellite products (reflectance, radiance), and 
the harmonisation of satellite records to correct for biases between different satellites, are 
performed using one of the following methods: 

 Simultaneous Nadir Overpass: This is where two satellites see the same scene within a 
few (~5) minutes of each other anywhere on the globe. 

 Bright pseudo-invariant sites: These are bright sites that are considered extremely 
stable over time (they are usually inaccessible deserts, for example the centre of the 
Sahara). Satellite measurements are compared to one another for similar view and 
illumination geometries (e.g. solar zenith angle) and provide satellite-to-satellite 
comparison or long-term stability testing for a single satellite. In this case, care also 
has to be taken of potential errors due to changes in the atmospheric transmittance. 
This is dealt with either through averaging, or by applying corrections based on 
external measurements of key atmospheric parameters such as aerosols, ozone and 
humidity. 

 Natural features – such as convective clouds, Rayleigh scattering over the ocean, sun-
glint etc.– can provide a stable reference. It is not always predictable exactly where 
and when these features are suitable for observation, but they have well-defined 
optical properties and can be reliably used for satellite-to-satellite comparison, and, 
in the case of Rayleigh scattering, absolute radiometric gain and band-to-band 
normalisation. 
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 The Moon: like the pseudo-invariant sites, the moon is stable over time49 and 
provides a bright uniform reference source for satellite-to-satellite comparison or 
long-term stability testing of a single satellite. 

 Instrumented reference sites: There are a small number of uniform sites which are 
constantly monitored by instruments on the ground to check both the ground 
reflectance and the optical properties of the atmosphere (aerosol optical depth, for 
example). These sites can be used for satellite-to-satellite comparison, using the on-
the-ground instruments as references to correct for changes of the site or the 
atmosphere, and also for satellite-to-ground comparison. In addition, these ground 
measurements can be made using equipment (e.g. a field radiometer) which relies on 
a SI-traceable calibration. Currently a working group of CEOS-WGCV-IVOS is 
developing a group of these sites into a global network known as RADCALNET. The 
RADCALNET project is in a two-year prototype stage. 

Note that all of these methods are still under development and the subject of active 
research. The methods themselves are being developed and full uncertainty analysis is 
generally not yet performed! 

8.4 Uncertainty analysis 

It is important to understand that the process of in-orbit calibration and validation, whether 
performed by on-board references or through vicarious calibration, will always introduce 
additional uncertainty components of its own. Understanding those uncertainties is, 
conceptually, no different from performing uncertainty analysis on ground-based 
calibrations and the techniques introduced in Section 4 of this textbook apply equally well to 
post-launch calibration. The main difference is that launch itself introduces a fundamental 
break in the traceability chain and many more of the uncertainty components after launch 
will have to be estimated in-flight and/or simply guessed. This could mean that the 
calibration procedure does not rigorously follow a SI-traceable chain. 

The objective should be to understand as many uncertainty contributors as possible, 
including the origin source for each, and to link these to the measurement model. These 
uncertainty contributions can then be individually assessed and any that are considered to 
be negligible can be removed, so simplifying the uncertainty analysis. 

8.5 Example: PTFE diffuser 

As an example, some preliminary (simplified and basic) uncertainty analysis is provided for a 
PTFE50 solar diffuser used as a reference on board an earth observation imaging satellite. This 
example is simplified and is not meant to be an exhaustive study of the uncertainties for such 
a measurement, but an example of how to apply Section 4 to a post-launch situation. 

                                                 

49 Providing due care is taken to correct for lunar phases, using for example the ROLO model 
50 Pressed PTFE powder is available under the tradename Spectralon™ from Labsphere and under the tradename OP.DI.MA 
from Gigahertz Optik 
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8.5.1 Use of the solar diffuser in orbit 

The solar diffuser provides a reflectance reference in orbit and is used to check the radiance 
calibration of the instrument. The radiance of the solar diffuser, when illuminated by the sun, 
is given by 

      i i r r sun i
SD 2

sun

, , , cos
,

E b
L p b

d
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where,  

  SD ,L p b is the radiance of the diffuser as observed by a particular ‘pixel’, p  in a 

spectral band b . 
  i i r r, , ,     is the diffuser radiance factor51 for illumination at the nominal solar 

angle  i i,   and viewing at the pixel angles  r r,  . It is a ratio of the diffuser BRDF 

(characterised on-ground) with respect to the ideal lambertian BRDF  1  . 

  sunE b  is the band-integrated solar irradiance at a standard distance (one 

astronomical unit). 
 i  is the angle from the normal axis of the diffuser to the sun-to-diffuser axis 

 sund  is the actual satellite-to-sun distance in astronomical units 

Note that this is to some extent sensitive to the viewing ‘pixel’ (and/or detector, depending 
on the instrument type) as this will determine the viewing angles to select the appropriate 
reflectance factor. It is also dependent on the SRF of the pixel, the instrument ‘band’. The 
band-integrated solar irradiance is given by52  
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where, 

  0E  is the average exo-atmospheric solar spectral irradiance53 [22] at wavelength 

  

                                                 

51 This term is sometimes incorrectly referred to as ‘reflectance’.  Reflectance is the ratio of the flux reflected in a given 
direction to the flux in the incident beam. Reflectance factor converts this to a ratio between the measured reflectance and 
that from a ‘perfect diffuser’. Radiance factor is both relative to a perfect diffuser and for infinitesimal angles. BRDF is 
defined as the function describing the change with angle of irradiation and angle of view, of the quotient of the radiance of a 
surface element in the given direction of view, by the irradiance incident on the medium from the given direction of 
irradiation. For a Lambertian diffuser, BRDF is numerically equivalent to the angular distribution (with angle of illumination 
and view) of the radiance factor divided by π. (Note all these quantities also vary with wavelength.) 
52 Note that if the SRF is normalised to have unit area, the denominator is unity. Often this assumption is made and the 
equation is written with the nominator only. 
53 There is considerable debate in the relevant communities as to which solar spectrum is to be used and how this integration 
is performed. One common method is to use the solar spectrum given by the Thuillier model, ref in text.   
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   ;S b   is the SRF of the instrument being calibrated for band b . More generally, it 

could be also depend on the detector and/or pixel. 

Note that equations (8.1) and (8.2) are ‘calculation equations’ to use the terminology of 
Section 4 of this textbook. The full measurement equations would take into account all the 
sources of uncertainty. 

The diffuser radiance is used to perform, an absolute radiance responsivity calibration (or an 
absolute reflectance responsivity calibration, see section 8.6.1) to obtain the calibration 
coefficients for radiance or reflectance measurements. The radiance responsivity gain 
coefficient54 is given by 

    
,

sd

,
,

b pQ
G b p

L b p
   (8.3) 

where 

 ,b pQ  is the dark-corrected signal (digital count) measured by the instrument. Typically 

this signal will be the result of averaging several samples (e.g. 1000 samples) in order 
to reduce the instrument noise or other random effects. 

  sd ,L b p  is the calculated solar diffuser radiance, as given in Equation (8.1). 

8.5.2 Step 1: Describing the Traceability Chain 

The traceability chain for the determination of the instrument gain (Equation (8.3)) is given in 
Figure 30. Note the break in the traceability chain due to launch and post-launch ageing 
effects. It is conceptually helpful to draw this into the traceability chain to ensure that the 
uncertainties associated with such changes are considered. In Figure 30, there is an 
assumption of some ‘on-board diffuser monitoring’. This is intentionally vague to allow for 
several possibilities. However, for subsequent discussions in this section, we will assume that 
this is achieved the MERIS way, i.e. through the use of a reference diffuser that is only rarely 
illuminated by the sun. Thus the “preflight calibration of diffuser monitoring system” here 
means the preflight BRDF calibration of the reference diffuser. 

 

                                                 

54 In practice this may be averaged across pixels within a band, for example. 
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Figure 30 Traceability chain for the instrument radiance gain coefficient calibration using the inflight 
diffuser. Note that launch and post-launch ageing effects break the full traceability to SI. 

8.5.3 Step 2: Writing down the calculation equations 

The calculation equations have been given above as Equations (8.3), (8.1) and (8.2).  

In addition it is necessary to calculate the diffuser radiance factor from the BRDF. The BRDF is 
essentially the angular distribution function for the radiance/reflectance factor divided by π, 
so this is nominally a requirement to ‘read off’ the correct BRDF or radiance factor value for a 
given instrument viewing angle and solar illumination angle. In practice it may be necessary 
to interpolate a value from discrete measured BRDF values or fit those to a curve. Another 
option is to use polynomial and higher order models which are “tuned” using experimental 
data like hemireflectance and scattering properties of the PTFE material.  

It is also necessary to have a model to account for the diffuser degradation in orbit. We 
assume here that the degradation in orbit is determined from a second diffuser that is used 
only rarely. This is the MERIS method and results obtained give the correction curve of Figure 
24a. We assume that a correction is applied, such that the in-orbit radiance/reflectance factor 
is calculated from the pre-flight radiance factor using 

     in-orbit i i r r i i r r, , , , , , 1 At              (8.4) 

where  
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 A  is the slope of the linear function fitted to the correction curve of Figure 29a 
 t  is the time since launch in the units of Figure 29a 

8.5.4 Step 3: Considering the sources of uncertainty 

The aim here is to consider what all the sources of uncertainty are. This list is not intended to 
be exhaustive or definitive for this particular example, but is indicative of the types of effect 
considered. 

Preflight:  i i r r, , ,      

The main diffuser will have been calibrated for BRDF during the pre-flight calibration 
campaign as well as the reference diffuser and the instrument angles. There will be several 
uncertainty contributors associated with this process: 

 Uncertainty associated with the absolute BRDF characterisation: The diffuser 
radiance/reflectance factor is calculated from the modelled diffuser BRDF and the 
known viewing angles for the relevant pixel and the solar illumination angle. The 
absolute diffuser BRDF characterisation will be performed by the calibration 
laboratory during the preflight calibration process. This laboratory will either be a 
national metrology institute, or the measurements will be traceable to a national 
metrology institute. 
 
For example, NPL’s BRDF measurements are performed on the National Reference 
Reflectometer (NRR) and a full uncertainty budget has been published [23]. The NRR 
performs radiance factor measurements using an input beam whose geometric extent 
is accurately defined with an aperture of known area, and measurements made (in 
both polarisations) of the direct beam and the light reflected from the sample. These 
measurements will typically interpolated or fit into a model providing a pre-flight 
uncertainty of the BRDF model.  

The reference diffuser (the one that is only occasionally used in orbit) will be 
calibrated pre-flight in a similar manner, with similar uncertainty components. 

 Uncertainty associated to the uniformity of the PTFE surface: This is due to the 
surface non-uniformity of the PTFE material that can produce small variations in the 
BRDF depending on the position. At instrument level, each pixel will be viewing 
different positions of the diffuser surface across and along the FoV. 
 
In this case we will also report the value provided by the MERIS diffuser 
characterisation. In that case, it was found a variability <0.5 % across the diffuser 
surface [24]. 
 

 Uncertainty associated with the pixel viewing and incident angles. The 
instrument and viewing angles for each pixel will be defined by characterising (or 
setting) the geometric arrangement preflight. There will be an uncertainty associated 
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with these angles due to the system itself or the influence of other systems (e.g. 
vibration due to an internal gyroscope system or the diffuser flatness using 
tomographic images). This will translate to an uncertainty associated with the 
radiance/reflectance factor that will depend on how rapidly the BRDF changes with 
angle. For a good quality diffuser, the radiance/reflectance factor is likely to change 
slowly with angle and therefore small uncertainties associated with the angle are 
likely to create negligible uncertainties associated with the BRDF.  

For example, as mentioned before the micro-vibrations can be assessed pre-flight 
providing a Gaussian angle error distribution of e.g. 0.1º (1σ). The uncertainty in the 
angle can be simply propagated by using a Monte Carlo evaluation. Simplified for this 
example, we assume that the radiance factor changes by ~0.3 % per degree and, 
proportionally a change of ~0.1 % in angle would result in an uncertainty 0.03 % (1σ)  

 Uncertainty associated with the suitability of the BRDF model. As commented in 
step 2 (section 8.5.3), the diffuser BRDF is fitted to an analytical model (or any other 
technique) that is used to estimate the radiance factor at the actual angles of 
illumination and view. The main uncertainty component will be that due to the 
suitability of the model. The MERIS calibration report [4] describes the root mean 
square residual55 (difference from model and measured values) as 0.3 %. In addition 
to this uncertainty it has been noticed that the calculated gain (Equation(8.3)) has 
some sensitivity to sun azimuth angle. There is no physical process that would create 
such dependence, and it can be assumed that this dependence is therefore an 
artefact of uncorrected errors in the BRDF model. This provides a further uncertainty 
component at ~0.5 %. 

 Uncertainty associated with the spectral interpolation of the BRDF. The BRDF 
values are measured at certain wavelengths only. At other wavelengths there is a 
need to interpolate. As discussed in Section 6.6, interpolation can have the 
unexpected effect of reducing the uncertainties as intermediate points are some form 
of average of the input data. However, that assumes that the interpolation is 
appropriate, a more useful measure of the uncertainty associated with interpolation is 
to take some additional measurements (or perform the interpolation with some 
measured values missing) and calculate the residual from the interpolation for the 
extra measured values. 

  

                                                 

55 The peak difference is 1 %. This uncertainty could be considered a Gaussian distribution with a standard deviation of 
0.3 % or a rectangular distribution with a half width of 1 %. For a rectangular distribution to obtain the equivalent standard 

uncertainty it is necessary to divide by 3  (see Section 0). This would give ~0.6 %. Whether 0.3 % or 0.6 % is used in the 
uncertainty budget depends on whether the residual distribution is rectangular or Gaussian. 
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Postlaunch:  in-orbit i i r r, , ,      

The post-launch diffuser BRDF is calculated from the preflight BRDF calibration and the 
known degradation in orbit, using Equation (8.4). There are the following sources of 
uncertainty for the degradation correction: 

 Reference diffuser stability. The assumption that the reference diffuser is stable in 
orbit. In actual fact, it too will degrade and probably at a similar rate. The MERIS 
instrument calibration report has calculated that for the time scale of Figure 29a, the 
reference diffuser had 37 minutes of exposure (compared to 370 minutes for the 
main diffuser). Applying the same correction over the shorter time period, suggests a 
change of ~0.2 %. This can be considered the uncertainty associated with the diffuser 
correction due to reference diffuser stability. 
 

 Correction model. The correction assumes that a linear trend reliably describes the 
diffuser ageing since launch based on pre-launch assessments [4]. The measured data 
values do not perfectly fit a linear trend, and it has been noted in the MERIS 
calibration report that the minor fluctuations from the linear trend are correlated with 
solar azimuth variation and this suggests that it is due to residual errors of the BRDF 
models (see below). As an initial estimate, the root-mean-square residual (deviation 
from the linear fit for the measured values) can be used as the uncertainty associated 
with the linear trend assumption (this is also ~0.2 %). It may be that for the shortest 
time periods an additional uncertainty component is required. 

Radiance of the diffuser  SD ,L p b   

The radiance of the diffuser is calculated using Equation (8.1). Just above we have described 
the main uncertainty sources related to the reflectance factor  i i r r, , ,      and its impact 

on the estimation of the radiance of the diffuser. The rest of components in this equation will 
also introduce additional uncertainties: 

 sund  ; The sun-satellite distance can be considered deterministic (it is a function of 

the date of acquisition and the earth’s orbit). The uncertainty associated with this can 
be considered negligible.  

  0E  ; The sun irradiance model for MERIS is based on SOLSPEC measurements 

and the paper by Thullier et al provides an uncertainty estimate with a clear 
uncertainty budget. There is, however, considerable debate as to which solar model 
to use. For TOA reflectance measurements, this will cancel out (see section 8.6.1), but 
for radiance it is significant. The uncertainty introduced here should include both the 
uncertainty associated with the model (as in the paper) and the suitability of the 
model choice (by comparing the outputs of different models to identify biases 
between different models)  
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For this example, we will simply provide the relative standard uncertainty reported by 
the Thuillier sun irradiance model of ~2.5 % 

  ;S b  ; The SRF of the band is characterised pre-launch. As discussed in Section 7 

this can change in orbit and while there are some possible in-orbit methods to 
recharacterise it, they have their own associated uncertainties. There may also be 
some effects (i.e. spectral noise) from any assumption that the SRF is the same for all 
spatial ‘pixels’. Note that the SRF is used within an integral in Equation (8.2) and 
therefore the analysis described in Section 7 applies. The multiplying function is the 
solar spectral irradiance. This means that the analysis will be most sensitive to 
changes in the SRF where the SRF is close to one of the solar Fraunhofer lines, and 
therefore the solar spectral irradiance is rapidly changing with wavelength.  

To make it very simplistic just assume that the spectral noise across the pixels in an 
specific detector and band is ±0.5 nm shift of central wavelength (note that a proper 
assessment would involve the integral over the whole band range in Equation (8.2)). 
The spectral response is also corrected in-flight and the stability correction residual is 
±0.2 nm (1σ) for the central pixel. This leads to an associated standard uncertainty of 
~0.54 nm. Finally, the evaluation of this uncertainty in Equation (8.2) would propagate 
to an uncertainty on the band-integrated solar irradiance of 0.2 % (the numbers are 
only illustrative)  

 icos  ; lambertian term. The same uncertainty on the incident angle knowledge 

that had an impact on the radiance factor will have a direct impact on the estimated 
diffuser radiance. Here the same angle uncertainty applies as in the previous 
uncertainty contributor (standard deviation of 0.1º). For a diffuser measuring at a 
nominal incidence angle i 60   , the impact on the cosine term would be: 

 icos 0.3%u     

Measured instrument signal: ,b pQ  

The measured signal will be a light count minus a dark count. There will be uncertainties 
associated with: 

 Instrument noise – this can be estimated from the standard deviation of the light 
measurements. Typically the measured signal will be an average of several samples 
that will reduce the random noise to a negligible level. For example if the instrument 
noise at the radiance calibration  calL  is 1 % for an specific band and the measured 

signal at calibration is averaged over 1000 samples, the noise introduced will be 
~0.03 %, which is negligible. 
 

 Quantisation noise – the effect of truncating the signal for the bandwidth of the 
instrument communication. The radiance measured at calibration calL  will be typically 

much higher than the minimum radiance minL  measured by the instrument  (e.g. TOA 
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ocean radiance levels). With a truncation of e.g. 12 bits, the quantisation noise will be 
negligible at the measured signal. 
 

 Internal spatial stray light – this effect will be accounted as negligible here since 
the input signal is largely uniform. The spread, back-reflection or any similar 
mechanism will “contaminate” the pixel neighbourhood. However, the same 
mechanism will apply for all the pixels in the FoV. Therefore, for each pixel the signal 
losses will be largely compensated by the signal increases from the rest of pixels 
meaning that the impact on the uncertainty is negligible. 
 

 Internal spectral stray light – the light from other spectral wavelengths may have 
some effect on the signal with a spectral imager system. 
 

 External straylight – during the calibration it may originate from reflections in the 
Sun diffuser assembly or other instrument parts. It is possible that the Earth light or 
other parts of the system contaminate the measurement. This light will be translated 
into a bias where the first component is proportional to calL and the second one is an 

offset of ,b pQ . Let’s assume that this have been well characterised (e.g. using a ray 

tracing model) and the total bias at calL  is in the order of 1 %. A correction term 

should be added in Equation (8.1), ext-strayK  that accounts for this bias. Nonetheless, 

the correction itself introduces a residual uncertainty of ~0.2 %. Note that the 
residual uncertainty will be linked not to the measured signal but to the estimated 
diffuser radiance (see Table 10). 
 

 Polarisation error – PTFE material is not a perfect scrambler. Thus, the sun-reflected 
signal in the instrument could have a degree of linear polarisation e.g. of 3 %. If the 
instrument does not include a depolarisation stage, a typical value of polarisation 
sensitivity could be 5 %. Thus, the error produced by this contributor will be of 
0.15 %. 
 

 Dark signal accuracy and stability – the first one accounts for the reliability of the 
dark signal measurement (e.g. using a shutter) whereas the second one accounts for 
the standard deviation of the dark signal and also for the fluctuations of dark signals 
taken at different times. There may be some sensitivity to the instrument 
temperature. The radiance at calibration calL will be much higher compared to the 

digital signal levels and any relative uncertainty (introduced as a %) can be neglected. 
In addition, it is expectable that the same calibration procedure includes e.g. a dark 
signal measurement before and after the measurement that minimises the stability 
error. 
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Uncertainty budget 

From the discussion in this section it is possible to write the rows of the uncertainty budget 
and assign uncertainties to each contributor. These are given in Table 10. Note that the 
symbols given are for the uncertainties associated with the effect.  

Table 10 Uncertainty budget outline for post-launch radiance calibration using a diffuser 

8.5.5 Step 4: Creating the measurement equation 

The simplest way to approach the measurement equation, a method similar to that for 
Equation (4.3) in Section 4.6, is to use an additional symbol for each of these uncertainty 

Symbol Effect 

Uncertainty 
associated 
with this 
effect 

Diffuser Radiance Factor  i i r r, , ,      

pf-BRDFu   Pre-flight diffuser absolute BRDF calibration 0.10 % 

BRDF-unifu   Uniformity of the PTFE surface 0.50 % 

BRDF-angu   Angle errors and BRDF angular sensitivity 0.05 % 

BRDF-modelu   BRDF model suitability 0.50 % 

BRDF- intu    Spectral interpolation of BRDF 0.20 % 

Diffuser Reflectance Factor correction  in-orbit i i r r, , ,      

ref-stabu   Post-launch stability of reference diffuser  0.20 % 

lin-corru   Suitability of post-launch correction (linear trend 
assumption) 

0.20 % 

Diffuser radiance calculation  SD ,L p b   

du   Sun-satellite distance 0.00 % 

sunEu   Solar irradiance model 2.50 % 

SRFu   SRF of instrument – spectral noise 0.20 % 

 icosu    Incident angle knowledge impact 0.30 % 

 ext-strayu K   External stray light correction residual 0.20 % 

Measured instrument signal ,b pQ  

noiseu   Instrument noise 0.03 % 

truncu   Quantisation noise 0.00 % 

int-strayu   Internal stray light                                                0.00 % 

polu   Polarisation error                                                 0.15 % 

darku  Dark signal accuracy and stability 0.00 % 
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components that represent the error in the gain due to this effect. In this case, the measured 
signal is best treated as having additive errors, thus56 

 , , ,light , ,dark noise trunc crosstalk dark dark-stabb p b p b pQ Q Q              (8.5) 

Here all the   terms have a nominal (expected) value of zero, but an uncertainty associated 
with that value that is given by the equivalent u  term. Each of these parameters will have 
units of [digital numbers] and the associated uncertainties should also have units of [digital 
numbers]. 

For all other parameters, a similar approach is taken with a multiplicative effect, hence, for 
example 

      sun sun

SD SRF SRF-Change ext-stray2
sun

, cos
,

p p E b
L p b K K K

d

   


  (8.6) 

Here the K  terms have a nominal value of unity, and an uncertainty associated with that 
given by the equivalent u  terms. Note that SRFu  is the uncertainty associated with the solar 

diffuser radiance due to the SRF. It is not the uncertainty associated with the SRF. Here all the 
terms are multiplicative and the uncertainty is a relative uncertainty, usually expressed in %.  

The parameters in the calculation equation also have associated uncertainties. In the case of 

the diffuser radiance factor,  ,p p   , the uncertainty associated with this comes from all the 

effects listed in Table 10. 

The final equation is also multiplicative,  

    
,

ext-stray int-stray
sd

,
,

b pQ
G b p K K

L b p
   (8.7) 

8.5.6 Step 5: Determining the sensitivity coefficients 

With the approach described in the previous section, the equations given are simple additive 
(Equation (8.5)) or multiplicative (Equation (8.6), (8.7)) expressions. The sensitivity coefficients 
for these equations are therefore simple. 

For Equation (8.5), the sensitivity coefficients for all terms are unity for uncertainties 
expressed in digital numbers. To use this uncertainty in Equation (8.7), the resultant absolute 

                                                 

56 Here, the first two terms, , ,light , ,darkb p b pQ Q are the nominal true value and the remaining terms are those with 

associated uncertainties. It is a matter of personal preference whether to treat these as uncertainties associated with the light 

and dark signals, respectively, and therefore write , , ,light , ,darkb p b p b pQ Q Q   as the measurement equation, with the 

other uncertainties inbuilt into   , ,lightb pu Q  and  , ,darkb pu Q , or to treat these as terms with no associated uncertainty 

and put all uncertainties into   terms. 



 EMRP-ENV04-D5.2.2 
 Version 1 

~ 106 ~ 

 

uncertainty (in digital numbers) must be converted to a relative uncertainty (in per cent). This 
is achieved by dividing the resultant uncertainty by the measured signal. 

Thus, from (8.5) 

  2 2 2 2 2 2
, noise trunc crosstalk dark dark-stabb pu Q u u u u u       (8.8) 

And  

    2 2
rel , , ,b p b p b pu Q u Q Q   (8.9) 

In equation (8.6) all the terms are multiplicative. In this case it is the relative uncertainties 
that are added in quadrature. Treating relative uncertainties, most sensitivity coefficients are 
unity. The exceptions are for the suncos  and 2

sund  terms. For the distance term the sensitivity 

coefficient is straightforward to derive, as in Section 3.1, equation (3.11) 

 SD SD

sun sun

2
L L

d d


 


 . (8.10) 

Therefore the relative sensitivity coefficient is -2. For the cosine term it is slightly more 
complex, as the differential of cos   is sin  and for angles around 0   , this suggests 
the sensitivity coefficient (and therefore the uncertainty contribution) is negligible. This is an 
example of where the in-built assumption in the Law of Propagation of Uncertainties, of 
linear functions, breaks down. The GUM does include advice on how to deal with this57 – but 
often this is an example of where a sensitivity coefficient calculated numerically is the 
simplest and most satisfactory method for estimating it. This can be done by calculating the 
result of Equation (8.6) first with the nominal solar angle and then again with a slightly 
modified version. The propagation of a Gaussian distribution through cos  would derive in 
a typical u-shaped function if the limits of the distribution account for a big or the whole 
part of the cosine period. However, in this case, the changes are so small (0.1 degrees) that 
its propagation is linear producing a Gaussian output. 

Note that although the relative sensitivity coefficients for the K  values are straightforward 
and nominally unity, this is because the K  values have been defined as the error in the 
radiance (Equation (8.6)) or gain (Equation (8.7)) due to this effect. The sensitivity of radiance 
to the uncertainty associated with the SRF, or the sensitivity of gain to internal stray light is 
much more easily modelled than written in an analytical equation, and therefore the hard 
work of working out the sensitivity coefficients is already done in the modelling.  

8.5.7 Step 6: Assigning uncertainties 

This step involves providing the numbers in Table 10 of Section 8.5.4. Many of the methods 
for estimating these associated uncertainties are given in that section. It is important to be 

                                                 

57 See, e.g. GUM section F.2.4.4, and the note to 5.1.2 
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clear in the table whether the uncertainties provided are relative (in percent) or absolute 
(with the same units as the quantity considered). It is also important, particularly with relative 
uncertainties to be clear whether this is the relative uncertainty associated with the quantity 
itself (e.g. distance) or the uncertainty associated with the measurand due to this effect (i.e. 
whether the sensitivity coefficient has already been taken into account).  

Strictly, the table ‘should’ provide only relative or only absolute uncertainties. And strictly, 
the table ‘should’ provide the uncertainty associated with each parameter in turn, with a 
separate column providing the sensitivity coefficient and a final column multiplying the two 
together. However, as with the K  factors described above, often this is not a clear cut 
decision and in real, experimental, uncertainty budgets this often gets messy! The most 
important thing is to make it clear in the wording. There should definitely be a column 
described as ‘the uncertainty associated with the measurand due to this effect’. In some 
cases, this alone is filled in. In other cases this will be a product of a sensitivity coefficient and 
the uncertainty associated with the quantity itself. 

8.5.8 Step 7: Combining and propagating uncertainties 

If the table provides a column labelled ‘the uncertainty associated with the measurand [here 
gain] due to this effect’ then the combination of uncertainty is simple – it requires that that 
column be added in quadrature. 

This does make the assumption that there is no associated correlation and the second half of 
the law of propagation of uncertainties is not required. In this example, this can be 
considered the case. If, however, the reflectance (Equation (8.11), section 8.6.1) is the product 
of interest, then note that the scene radiance L  is correlated with the band-integrated solar 
irradiance  sunE b .  This is because it is calculated from the measured signal and gain, which 

is itself calculated from the solar diffuser measurement (Equation (8.3)), which depends on 
the band-integrated solar irradiance. It is possible to calculate the correlation coefficient 
between these two parameters. Alternatively, and more straightforwardly, the equations 
should be written out in full and the term cancelled before uncertainty analysis is carried out. 

8.5.9 Step 8: Expanding uncertainties  

Here the uncertainty analysis has been straightforward and it is very likely that an expansion 
to a 95 % confidence interval is achieved by multiplying by 2k  . If any uncertainty 
components are determined on a Type A evaluation based on a small number of readings, 
then either the uncertainty should be increased using Equation (3.26) in Section 3.3.2, or the 
Welch-Satterthwaite Equation, Equation (4.4) should be used. For Type B evaluations it is also 
possible to consider, in the Welch-Satterthwaite equation the ‘uncertainty in the uncertainty’, 
as in Section 4.10. 

8.6 Level-1 EO products radiometric uncertainty 

Although the main objective of the course is about understanding the main uncertainties 
associated to EO instrument and its calibration (both pre-flight and post-launch), it is worth 
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to mention how these instrument measurements are typically disseminated to the EO users 
and the consequences in terms of uncertainty assessment and propagation. 

The idea behind this section is not provide a detailed assessment of the specific L1 ground 
processing related to EO products. That would not only imply the understanding of the 
absolute calibration uncertainty as in section 8.5 but other ground processing corrections: 
DS, linearity, uniformity, temperature, etc… The objective here is to help both instrument 
designers and EO end-users understand of the implications that the product format has in 
the EO uncertainty analysis and its propagation to higher level products. 

We will describe here two typical examples in EO product format that demonstrate the 
specific constraints associated with the uncertainty assessment and propagation: the 
radiance-to-reflectance conversion and the image orthorectification. 

8.6.1 Radiance-to-reflectance conversion 

The PTFE diffuser example in section 8.5 has been used to exemplify a typical post-launch 
calibration of EO systems. This type of calibration provides a radiance gain as indicated in 
Equation (8.3) 

One of the main satellite level-1 products is the top-of-atmosphere reflectance. Top-of-
atmosphere reflectance is calculated from the measured radiance using: 

 
 

 
 

2
sun_to_surface TOA

TOA
sun sun

,
.

cos

d L b p

p E b





   (8.11) 

where 

 sun_to_surfaced  represents the Sun-to-Earth surface distance in astronomical units and 

  sun p  is the sun zenith angle that corresponds to the Earth surface projection for 

each pixel. 

Note the similarity between Equation (8.11) and Equation (8.1). This means that for the 
reflectance product, in effect the reflectance of the Earth is compared to the reflectance of 
the panel directly and some of the uncertainty components described above are cancelled. In 
particular, the same integral of the product of the SRF of the instrument and the defined 
solar irradiance is used. This means that reflectance products are insensitive to errors in 
these parameters58. Furthermore it removes the cosine effect of different solar zenith angles 
due to time acquisition differences between images as well as the Earth-to-sun distance 
changes through the year (translation) and day (rotation). 

                                                 

58 If the SRF has changed or is not the one assumed, then it will cancel out in the solar convolution integrals in Equations 
(8.11) and (8.1). That does not mean that changes in the SRF are insignificant, however! The calculated value   in equation 

(8.11) is the band-integrated earth top-of-atmosphere reflectance. If that product is subsequently used or compared with other 
products, then the band-integration must be taken into account. Because that will depend on the true SRF and the true ground 
spectral reflectance, then errors in the assumed SRF will have a significant effect.  
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Although the reflectance approach corrects for the several issues as described before, the 
radiance factor  TOA , ,p l b only accounts for a specific incident and reflected geometry. 

The exact viewing geometry will be different from pixel-to-pixel across the field of view, 
which may be different for different orbits. Some of the Earth’s surfaces (e.g. desert areas) 
can provide BRDF characteristics “relatively” close to the ideal Lambertian one which 
minimises the directional dependency of the measured radiance. However, this is not the 
situation in most cases where the surface BRDF presents a specular component and an 
important anisotropy. 

Several models have been (and are) used to characterise the different Earth surface BRDF. 
Recent missions, e.g. POLDER/PARASOL, estimate the directionality of the Earth surface-
atmosphere (TOA) reflectance. The BRDF correction is a source of uncertainty which is 
accounted for in higher level products (e.g. surface reflectance products).  E.g. [25] 

To sum up, it is important to be clear about the quantity of measurement and assumptions in 
the EO products, since, for example, the uncertainties associated with reflectance are 
different from those associated with radiance.  These differences will propagate through to 
higher-level products.  

8.6.2 Image orthorectification 

Providing an image at the instrument pixel viewing imposes several difficulties to the EO end 
users. For example, at the sensor geometry each individual pixel does not account for the 
surface elevation variations or the difference in projection over the surface from pixels at 
nadir and off-nadir as shown in Figure 31.  

Typically, EO products are resampled during the ground processing (or using an external 
tool) that provides pixel images orthorectified to world geodetic models (e.g. WGS 84). This 
provides a uniform size of the pixel (pixel size provided in meters rather than mrad) while a 
digital elevation model (DEM) corrects (up to a certain extent) for the surface elevation 
variations. Although this is a benefit to EO end users it also imposes a difficulty when 
propagating the uncertainties from the instrument output geometry to the Earth geometry.  
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Figure 31 Compared to a nadir view (looking straight down), a view from the side (30°) subtly distorts the 
terrain. Satellite data must be carefully corrected for even small distortions due to terrain or viewing 
angle if scientists want to detect changes in the landscape over time. (NASA Earth Observatory images by 
Robert Simmon, based on the USGS National Elevation Dataset.)  
http://earthobservatory.nasa.gov/Features/GlobalLandSurvey/page3.php 

The difficulty arises from the fact that the pixel image does not represent anymore the focal 
plane geometry. That means, that differences between several detectors, filters etc. are not (a 
priori) traceable anymore. Nonetheless, the capacity to propagate the instrument uncertainty 
to the resampled products relies in a great extent to the radiometric resampling algorithm. 
Here we make a distinction between two typical radiometric resampling algorithms and its 
different impact in terms of uncertainty: 

 Cubic convolution resampling algorithm uses a weighted average of the 16 pixels 
nearest to the focal cell and produces the smoothest (or most continuous) image 
compared to nearest neighbour resampling. It provides a great performance in terms 
of pixel interpolation and smoothness but limits the propagation of the instrument 
uncertainties to the product (no correspondence between pixels). It is also one of the 
most computationally intensive algorithms.  
 
The propagation of the radiometric uncertainty from the instrument image to the 
resampled image becomes especially complicated for systems which include several 
detectors in the focal plane. In that case, it complicates the determination of the 
detector noise or the spectral response not only at pixel level but also at detector 
level.  
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For example, this is the case of Landsat-8 Level 1 T- Terrain Corrected products which 
have been resampled using a cubic interpolation algorithm. The resampled pixels 
have no direct equivalent pixel in the instrument image. In addition, each pixel cannot 
be, a priori59, directly associated to any of the 14 detector modules that the OLI 
instrument includes. 

The Figure 32 corresponds to the per-module average spectral response of the CA 
band Landsat 8 OLI instrument. From the figure, it is possible to appreciate the 
difference in average spectral response between different modules due to different 
filter wafers.  

 

Figure 32 Landsat-8 OLI Spectral Response normalised and averaged for each one of the 14 modules of 
the Coastal Aerosol band [26].  

For the resampled image Level 1 T product, the per-module spectral response will not 
be possible to associate (a priori) to the image but the average spectral response for 
the whole FoV (i.e. the 14 detectors). Thus, an error would be introduced compared to 
the non-resampled image which would account for the difference in the convolution 

                                                 

59 It is possible to implement mechanisms that define the footprint of the detectors in the resampled image with some 
limitations. 
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from one module to another (similarly to Equation (8.2)) and will depend on the type 
of scene measured60.  

 Nearest Neighbour resampling algorithm works by matching a pixel from the 
original image to its corresponding position in the resized image. If no corresponding 
pixel is available, the pixel nearest is used instead. This type of performance has been 
used in several missions like ENVISAT/MERIS. It does not produce the smoothest 
image but reduces the processing [27] by more than 10 times compared to the cubic 
convolution interpolation and it is a reversible process. It means that each resampled 
pixel corresponds to a specific pixel of the instrument focal plane. The Figure 33 
shows an example of that pixel correspondence for the ENVISAT/MERIS mission.  

 

 

Figure 33 MERIS correspondency between the resampled pixels and the focal plane pixels. Re-builds 
ideal swath from actual MERIS FOV: slightly misaligned plane + inter-camera dispersion [Ludovic Bourg, 
MERIS Level 1b processing, MERIS US Workshop, 14 July 2008] 

                                                 

60 Note that the level of error for this case has not been calculated. The bias introduced could be partly compensated or could 
have limited impact on the radiometric uncertainty budget. However, this distinction at TOA level would be of extremely 
benefit for the uncertainty propagation to higher level terms 
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9 Conclusions 

This course textbook has provided an introduction to uncertainty analysis for earth 
observation instrument calibration. It has provided a suggested step-by-step methodical 
approach to uncertainty analysis and given some examples of how to apply this in real earth 
observation calibrations. 

One of the first barriers many scientists and engineers have to uncertainty analysis is that it 
seems theoretical and complicated. Our aim in this course has been to break down that 
barrier and present a practical and pragmatic approach to uncertainty analysis. 

Once scientists and engineers begin to apply these tools, they often reach a second barrier – 
the realisation of just how complex the experimental systems are and just how many sources 
of uncertainty they are61. Once they start to produce uncertainty budgets, they also start to 
see the subtle correlations – for example that if both the detector responsivity and the filter 
transmittance are temperature sensitive, then there is a correlation between detector 
responsivity and filter transmittance. This increased understanding can lead scientists and 
engineers to become overwhelmed with the problem and therefore put uncertainty analysis 
off to be tackled another day. 

Our recommendation is that you consider your first uncertainty budget a simplistic one. Start 
with the concepts that are most critical. It is likely that you have an intuitive understanding of 
where your dominant uncertainty components will come from. Later this initial budget can 
be refined and augmented. Later it will be possible to replace what are ‘guesses’ now with 
formal uncertainty estimates based on experimental testing or modelling. It is Emma’s 
experience that initial uncertainty budgets based on ‘guesswork’ are pretty close to the 
formal uncertainty budget that comes after a year or more of rigorous analysis. It is also her 
experience that uncertainty budgets tend to increase over time, as more ‘unknown 
unknowns’ are recognised and included. Don’t let this put you off! 

                                                 

61 This realisation is, of course, also behind the first barrier, although at that stage it is harder to be explicit about what the 
concern is. Once the first three steps suggested in Section 4 are completed, though, it can be quite daunting to think about all 
the effects that are now listed. 
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Appendix A Making and using covariance matrices 

When it is possible to split the uncertainty budget into systematic effects and random 
effects, it is not necessary to use the full form of the law of propagation of uncertainty 
(Equation (2.1)). In general, as discussed in Section 3.5, the systematic and random effects 
can separately be explicitly described in an error-model form of the measurement equation. 
In other words as the correlation is built into the error model, the terms within that error 
model are entirely uncorrelated with each other. 

This approach is often the simplest, particularly when data analysis is carried out using a 
spreadsheet program. There are, however, occasions when such an analysis is insufficient. 
Sometimes correlation cannot be described by simply separating random and systematic 
components. Such separation is inapplicable whenever mathematical correlation has been 
introduced, for example through interpolation, averaging, smoothing, bandwidth correction 
and similar processes that combine different data points (e.g. from different wavelengths, or 
from different radiance levels). In these situations a covariance matrix provides the 
straightforward means to apply the full form of the law of propagation of uncertainty.  

The law of propagation of uncertainty (equation (2.1)) is written in matrix form as  

  (11.1) 

where  

  (11.2) 

is a column vector of sensitivity coefficients. (١	represents transpose, i.e that vector is written 
as a column, rather than as written here, for space reasons, as a row) and xU is the covariance 

matrix. This form is given and used in the Supplement 2 to the GUM62 as equation (3) on 
page 15.  

Once a covariance matrix has been formed, Expression (11.1) is simple to implement in a 
programming language, particularly a matrix-based language such as MATLAB. This 
formulation can handle complicated analysis problems and partially correlated data. 

A.1 How to create a covariance matrix  

A covariance matrix is a square matrix that describes the covariance of the measured values, 
the ix . Each row and each column represents a different ix . The diagonal elements are the 

variance,  2
iu x , the non-diagonal elements represent the covariance,  ,i ju x x . Note that 

                                                 

62 Freely downloadable at http://www.bipm.org/en/publications/guides/gum.html 
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the covariance matrix is generally symmetrical as    , ,i j j iu x x u x x . If two quantities have 

no associated covariance, (i.e. they are not correlated), then the covariance term is 0.  

As an example, consider the case of data that will subsequently be integrated spectrally, the 
covariance matrix we need to develop is that showing the covariance associated with (e.g.) 
spectral irradiance values determined at different wavelengths. This example is used because 
it’s often in spectral problems that covariance matrices are needed. 

Each row (or column) of the covariance matrix will thus represent a different measurement 
wavelength. The diagonal terms give the variance  2

iu E and the off-diagonals the 

covariance  ,i ju E E  between the irradiance at the row wavelength and the irradiance at the 

column wavelength. The covariance matrix takes the form 
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 (11.3) 

The values shown in red simply specify the row and column numbers and would not 
normally be indicated.  2

iu E on the diagonal represents the variance: the square of the 

standard uncertainty associated with the spectral irradiance value at i . This variance is the 

square of the combined standard uncertainty, obtained by combining in quadrature the 
standard uncertainties associated with all effects, whether systematic, random or mixed. The 
off-diagonal terms represent the covariance associated with the measured values at two 
different wavelengths, as explained, through examples, below. 

Radiometric uncertainties are usually expressed as relative uncertainties (fractionally or in 
percent) rather than absolute uncertainties (with the same units as the measurand).  The 
covariance matrix requires “absolute” variances and covariances. Thus a covariance matrix for 
spectral irradiance, which has units W m–2 nm–1, will have terms with units63 (W m–2 nm–1)2. 
The diagonal terms can be calculated as the square of the product of the relative standard 
uncertainty and the spectral irradiance value at that wavelength.  

In Section 3.5 we introduced an error model where the irradiance (here at one wavelength, 

i ) can be expressed as a ‘true irradiance’ with unknown random and systematic errors 

(draws from the probability distribution described by the uncertainty associated with random 
and systematic effects, respectively) 

 Ti iE E R S     Repeat of (3.28) 

                                                 

63 This non-standard notation for the units is to aid understanding  
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With this model, the variances (diagonal terms in the covariance matrix) are given by 

         2 2 2 2 .i i iu E u S u R E       (11.4) 

The off-diagonal terms, written  ,i ju E E , give the covariance between the spectral irradiance 

value determined at i and that determined at j . This covariance will arise only from those 

effects that are common to both measured values: the systematic effects. Thus for the error 
model in (3.28), only the term  u S  is included. The off-diagonal covariance values for this 

error model are  

           2, .i j i ju E E u S E E       (11.5) 

Therefore the covariance matrix, expression (11.3), takes the (symmetric) form 
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 (11.6) 

To create this matrix, it is necessary to examine each row of the uncertainty budget and 
consider whether that row corresponds to a systematic or random effect with wavelength. 
The uncertainty associated with systematic effects should be combined in quadrature to 
create a single uncertainty, which becomes  u S . Similarly, on a wavelength-by-wavelength 

basis, the uncertainty associated with random effects should be combined to obtain a single 
standard uncertainty, which becomes  iu R .  

Sometimes a more detailed error-model is needed. If there are both multiplicative and 
additive effects in an error model, the error model that replaces (3.28) is  

       T 1 1 .i i i iE E S R s r        (11.7) 

The multiplicative effect S will include terms such as distance effects, alignment effects, etc. 
The multiplicative effect iR will include terms such as light-signal noise, and rapidly varying 

electrical current stability, temperature sensitivity, etc. The additive term s will be a constant 
offset at all wavelengths. This term may correspond to a common dark reading subtracted at 
all wavelengths, stray light, etc. The additive term ir corresponds to a random offset: the 

noise in the dark signal, variations in stray light, etc. 

The covariance matrix formed from the error model (11.7) has for (ith row, jth column) 
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 (11.8) 
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Note that the uncertainty associated with additive effects will generally be described as an 
“absolute” uncertainty and does not need to be multiplied by the spectral irradiance value. It 
is possible to extend this concept further to account for covariance between the measured 
values of a test lamp and those of a reference lamp.  
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Appendix B Appendix: Monte Carlo Analysis 

This appendix provides a recipe on how to implement a Monte Carlo simulation and uses 
code examples given for Matlab. 

What you need before you start: 

1. A model of the effect you are trying to analyse, taking a number of parameters and 
producing an output. This is essentially a bit of a computer code, ideally a function 
that encapsulates the whole model with input parameters and according output. 

2. An uncertainty estimate for each parameter included in the uncertainty modelling. 
3. A probability distribution function (PDF) for each parameter. Most commonly these 

would be a Gaussian distribution, but it may depend on the process that creates the 
parameter in the first place. For example, uncertainties due to sampling of a 
continuous variable by a digitiser will have a PDF in the form of a top hat (rectangular 
distribution). 

The actual process of the Monte Carlo Simulation is illustrated in Figure 34 and comprises 
the following steps: 

1. Generate N  random values for each parameter as samples from the correct PDF, 
mean value and standard deviation. These are the realisations of the input parameter. 

2. Enter a loop that will be iterated N times. For each iteration, the i -th realisation is 
chosen as an input parameter, the model is parameterised with the i -th value and 
the output stored. 

3. The uncertainty of the model is estimated from the standard deviation of the model 
output. 

 

Figure 34: Monte Carlo Simulation processes 

Table 11 introduces a Matlab code for a simple example of a Monte Carlo Simulation: 

1. Realisations of an input parameter with a mean = 2 and a standard deviation, i.e. 
uncertainty, of 0.2 are calculated by employing the Matlab random number 
generator, creating 1000 random values (Figure 35). The relative uncertainty is thus 
0.2/2*100 = 10 %. 
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2. These 1000 random values representing possible values the parameter could assume 
are fed into the model in a loop. The model is in this case the squared logarithm of 
the input parameter.64  

3. The output of the model (Figure 36) is used to estimate the model uncertainty by 
computing the standard deviation of the output. In the demonstrated run the 
uncertainty of the model is 0.137 with a mean value of 0.48. The relative uncertainty is 
thus 0.137/0.48*100 = 28 %. 

Table 11: Matlab code for a simple Monte Carlo Simulation 

mu=2; % define mean value of PDF 
sigma=0.2; % define standard deviation of PDF 

  

parameter_values = (mu + sigma.*randn(1000, 1)); % generate realisations of 

the parameter 

% plot as histogram 

figure 

hist(parameter_values, 25) 

  

% plot vector of the random values (parameter realisations) 

figure 

plot(parameter_values, 'LineWidth',linewidth) 

 

% simple model to draw from the generated parameter values 

output = zeros(size(parameter_values)); % allocate output vector 

  

% loop over all realisations and calculate the model output 

for i=1:length(parameter_values) 

    parameter = parameter_values(i); 

    output(i) = (log(parameter))^2; 

end 

% plot output as vector 

figure 

plot(output, 'LineWidth',linewidth) 

 

% plot output as histogram 

figure 

hist(output, 25) 

% get statistics of the output 

mean_output = mean(output) 

stddev_output = std(output) 

                                                 

64 Note that the ‘for loop’ is used here for educational purposes only. This simple model could of course be computed in one 
vector operation by output = (log(parameter_values)).^2. This will of course not always be possible for more 
complex models, in which case a loop will be required. 
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Figure 35: Model input realisations as histogram (left) and value vector plot (right) 

 

 

 

Figure 36: Model output as histogram (left) and value vector plot (right) 
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Appendix C References and Further Reading 

C.1 Further study and reading 

Any further study on uncertainty analysis must start with the GUM itself [1]. The GUM is 
downloadable from http://www.bipm.org/en/publications/guides/gum.html and this website 
also contains different supplements to the GUM and an introduction to the GUM. 

The best introductory textbook to the concepts of the GUM is arguably “An introduction to 
uncertainty in measurement” by Les Kirkup and Bob Frenkel. It is written in a very 
straightforward way and provides a good overview of the statistical concepts behind the 
GUM while remaining pragmatic and practical.  

A slightly more advanced and detailed, but still very readable book is  “Data reduction and 
error analysis for the physical sciences” by P.R. Bevington and D.K. Robinson. This book 
discusses the statistical basis of uncertainty analysis, and also describes Monte Carlo 
techniques and least square fitting.  

The starting point for the application of uncertainty analysis to Earth Observation is from the 
QA4EO Guidelines. These are available at http://qa4eo.org/ (see “Documentation” for the 
guidelines themselves and “Resources” for additional notes). There are also some case 
studies for the application of QA4EO to Earth Observation.  

NPL offers several good practice guides on measurement and uncertainty analysis. NPL also 
offers a growing range of training courses – both face-to-face and e-learning. See: 

http://www.npl.co.uk/publications/good-practice-online-modules/.  
http://www.npl.co.uk/learning-zone/training/. 
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